When Recorded Mail To: American Fork City 51 East Main American Fork UT 84003

ENT 50432:2021 PG 1 of 73 ANDREA ALLEN UTAH COUNTY RECORDER 2021 Mar 17 10:07 am FEE 40.00 BY JR RECORDED FOR AMERICAN FORK CITY

NOTICE OF INTEREST, BUILDING REQUIREMENTS, AND ESTABLISHMENT OF RESTRICTIVE COVENANTS

site grading plan to the property grown, UT 84003 and therefore a Study and site grading plan per specification including specifica 6-2-4, Liquefiable Soils. Said Secondary	generally located at Ze mandating that all cons the requirements of A ally Ordinance 07-10-47 ctions require establishments.	cal Study dated <u>17/1/20/9</u> along with the truction be in compliance with said Geotechnical merican Fork City ordinances and standards and truction 6-5, Restrictive Covenant Required and ment of a restrictive covenant and notice to property ons and construction methods associated with the
	Exhibit A – Legal Desc Exhibit B – Geotechnic Exhibit C – Site Gradin	al Study
Dated this 14 ^{7h} day of	January	, 20 <u>Z 1</u> .
OWNER(S):		
(Signature) And Sulp	<u> </u>	(Signature)
(Printed Name)		(Printed Name)
Maryw (Title)	, 	(Title)
STATE OF UTAH COUNTY OF <u>Hah</u>) § .)	
of said Property as (individuals	and/or authorized repre	personally appeared before me of the personal pe
that such individuals or compan to the articles of organization wh		strument freely of their own volition and pursuant How Jones
Actory Public - LISA MARII Comm. # My Commise January	E TOMLIN 710343 Jion Expires	Notary/Public My Commission Expires: 13/.2021

EXHIBIT A

Beginning at a point on the south line of 200 South Street said point being South 89°59'22" West 2465.02 feet and North 1022.37 feet from the East Quarter Corner of Section 22 Township 5 South, Range 1 East and running

thence South 02°24'06" West 1,069.47 feet to the North line of 350 South Street; thence North 89°28'52" West 71.77 feet along the North line of said 350 South Street; thence Westerly 60.65 feet along the arc of a 503.00 foot radius curve to the left (center bears South 00°31'08" West and the chord bears South 87°03'53" West 60.61 feet with a central angle of 06°54'29");

thence South 83°36'38" West 33.48 feet along the North line of said 350 South Street; thence Westerly 54.59 feet along the arc of a 447.00 foot radius curve to the right (center bears North 06°23'22" West and the long chord bears South 87°06'34" West 54.56 feet with a central angle of 06°59'51") along the North line of said 350 South Street;

thence North 89°23'31" West 139.42 feet along the North line of said 350 South Street; thence Northwesterly 31.47 feet along the arc of a 20.00 foot radius curve to the right (center bears North 00°36'29" East and the long chord bears North 44°18'43" West 28.32 feet with a central angle of 90°09'36") along the North line of said 350 South Street to the East line of 900 West Street;

thence North 00°46'05" East 1,031.88 feet along East line of said 900 West Street;

thence Northeasterly 47.17 foot along the arc of a 30.00 feet radius curve to the right (center bears South 89°13'55" East and the chord bears North 45°48'43" East 42.46 feet with a central angle of 90°05'15") along the East line of said 900 West Street to the South line of 200 South Street;

thence South 89°08'40" East 379.83 feet along the Southeasterly line of 200 South Street to the point of beginning.

NORTH HALF OF SECTION 22, TOWNSHIP 5 SOUTH, RANGE 1 EAST SALT LAKE BASE AND MERIDIAN AMERICAN FORK, UTAH COUNTY, UTAH

SALT LAKE CITY 45 W. 10000 S., Suite 500 Sandy, UT 84070 Phone: 801.255.0529

LAYTON Phone: 801.547.1100

TOOELE

Phone: 435.843.3590

CEDAR CITY Phone: 435.865.1453

RICHFIELD Phone: 435.896.2983

WWW.ENSIGNENG.COM

FOR:
DUAINE RASMUSSEN
5740 SOUTH 1300 EAST, STE 200
SALT LAKE CITY, UTAH, 84121
CONTACT:
DUAINE RASMUSSEN
PHONE: 801-000-0000

CASTLEWOOD AMERICAN FORK APTS

AMERICAN FORK, UTAH **900 WEST 200 SOUTH**

OVERALL GRADING PLAN

PRINT DAT 9/4/20

B

78C 20.89

TBC 20.76

7BC 20.74

GENERAL NOTES

9

21.83

25%

21.56 21.56

21.95

TOC 21,49

700 22.06

70C 22.07

70G 20.23

50

- ALL WORK TO COMPLY WITH THE GOVERNING AGENCY'S STANDARDS AND SPECIFICATIONS
- ALL WORK SHALL COMPLY WITH THE RECOMMENDATIONS OF THE GEOTECHNICAL ENGINEER POSSIBLY INCLUDING, BUT NOT LIMITED TO, REMOVAL OF UNCONSOLIDATED FILL ORGANICS, AND DEBRIS, PLACEMENT OF SUBSURFACE DRAIN LINES AND GEOTEXTILE, AND OVEREXCAVATION OF UNSUITABLE BEARING MATERIALS AND PLACEMENT OF ACCEPTABLE
- 4. THE CONTRACTOR SHALL BECOME FAMILIAR WITH THE EXISTING SOIL CONDITIONS.
- ELEVATIONS HAVE BEEN TRUNCATED FOR CLARITY, XX.XX REPRESENTS AN ELEVATION OF 45XX.XX ON THESE PLANS.
- LANDSCAPED AREAS REQUIRE SUBGRADE TO BE MAINTAINED AT A SPECIFIC ELEVATION BELOW FINISHED GRADE AND REQUIRE SUBGRADE TO BE PROPERLY PREPARED AND SCARIFIED. SEE LANDSCAPE PLANS FOR ADDITIONAL
- EXISTING UNDERGROUND UTILITIES AND IMPROVEMENTS ARE SHOWN IN THEIR APPROXIMATE LOCATIONS BASED UPON RECORD INFORMATION AVAILABLE AT THE TIME OF PREPARATION OF THESE PLANS. LOCATIONS MAY NOT HAVE BEEN VERRIFED IN THE FIELD AND ING QUARANTEES IN MADE AS TO THE ACCURACY OR COMMETENESS OF THE INFORMATION SHOWN. IT SHALL BE THE RESPONDISHIPT OF THE CONTRACTOR TO DETERMINE THE BUSINESS AND CANDISON OF THE UTILITIES SHOWN ON THESE PLANS OR MOCKATED IN THE FIELD BY LOCATION SERVICES. ANY ADDITIONAL COSTS FOURTED AS A RESULT OF THE CONTRACTORS FAUL BY TO VERTIFY THE LOCATIONS OF EXISTING UTILITIES PRIOR TO THE EGENNING OF CONSTRUCTION IN THEIR VICINITY SHALL BE BORNE OF THE CONTRACTOR AND ASSUMED INCLUDED IN THE CONTRACT. THE CONTRACTOR IS TO VERFOR ALL CONNECTION POINTS WITH THE EIGHT SHOULDED IN THE CONTRACT. THE CONTRACTOR IS TO VERFOR ALL CONNECTION POINTS WITH THE EIGHT SHOULDED IN THE CONTRACT. THE CONTRACTOR IS TO VERFOR THE SOCIAL, THE CONTRACTOR SHALL NOTIFY THE ENGINEER PRIOR TO CONSTRUCTION TO DETERMINE IF ANY FIELD ADJUSTMENTS SHOULD BE MADE.
- ALL STORM DRAIN INFRASTRUCTURE TO BE INSTALLED PER GOVERNING AGENCY OR APWA STANDARD PLANS AND SPECIFICATIONS.
- ALL FACILITIES WITH DOWNSPOUTS/ROOF DRAINS SHALL BE CONNECTED TO THE STORM DRAIN SYSTEM. SEE PLUMBING PLANS FOR DOWNSPOUT/ROOF DRAIN LOCATIONS AND SIZES. ALL ROOF DRAINS TO HAVE MINIMUM 1% SLOPE.
- THE CONTRACTOR SHALL ADJUST TO GRADE ALL EXISTING UTILITIES AS NEEDED PER LOCAL GOVERNING AGENCY'S STANDARDS AND SPECIFICATIONS.

300 SOUTH STREET

SALT LAKE CITY

45 W. 10000 S., Suite 500 Sandy, UT 84070 Phone: 801.255.0529

LAYTON Phone: 801.547.1100

TOOELE Phone: 435.843.3590

CEDAR CITY

Phone: 435.865.1453 RICHFIELD

Phone: 435.896.2983

WWW.ENSIGNENG.COM

6740 SOUTH 1900 EAST, STE 20 SALT LAKE CITY, UTAH, 84121 CONTACT: DUAINE RASMUSSEN PHONE: 801-000-0000

AMERICAN FORK, UTAH 900 WEST 200 SOUTH

CASTLEWOOD AMERICAN FORK APTS

GRADING PLAN

PRINT DATE 9/4/20 DRAWN BY E. FISHER J. FORD

7BC 26.82

4

7BC 26.14

GENERAL NOTES

ALL WORK TO COMPLY WITH THE GOVERNING AGENCY'S STANDARDS AND SPECIFICATIONS

ENSIGN

SALT LAKE CITY 45 W. 10000 S., Suite 500 Sandy, UT 84070 Phone: 801.255.0529

LAYTON

Phone: 801.547.1100

TOOELE Phone: 435.843.3590

CEDAR CITY

Phone: 435,865,1453 RICHFIELD

Phone: 435.896.2983

WWW.ENSIGNENG.COM

CONTACT:
DUAINE RASMUSSEN
PHONE: 801-000-0000

CASTLEWOOD AMERICAN FORK APTS

AMERICAN FORK, UTAH 900 WEST 200 SOUTH

JARED K. FORD

GRADING PLAN

PRINT DATE 9/4/20 DRAINN BY E. FISHER J. FORD

J. FORD

ø

SEE DRAWING C-304

50432:2021 PG 10 of 73 ENT

GENERAL NOTES

- ALL WORK TO COMPLY WITH THE GOVERNING AGENCY'S STANDARDS AND SPECIFICATIONS
- ALL WORK SHALL COMPLY WITH THE RECOMMENDATIONS OF THE GEOTECHNICAL ENGINEER POSSIBLY INCLUDING, BUT NOT LIMITED TO, REMOVAL OF UNCONSOLIDATED FALL ORGANICS, AND DEBRIS, PLACEMENT OF SUBSURFACE DRAIN LINES AND GEOTEXTLE. AND OVEREXCAVATION OF UNSUITABLE BEARING MATERIALS AND PLACEMENT OF ACCEPTABLE FALL MATERIAL.
- THE CONTRACTOR SHALL BECOME FAMILIAR WITH THE EXISTING SOIL CONDITIONS.
- ELEVATIONS HAVE BEEN TRUNCATED FOR CLARITY. XXXX REPRESENTS AN ELEVATION OF 45XX.XX ON THESE PLANS.
- LANDSCAPED AREAS REQUIRE SURGRADE TO BE MAINTAINED AT A SPECIFIC ELEVATION BELOW FINISHED GRADE AND REQUIRE SUBGRADE TO BE PROPERLY PREPARED AND SCARIFIED. SEE LANDSCAPE PLANS FOR ADDITIONAL
- EXISTING UNDERGROUND UTILITIES AND IMPROVEMENTS ARE SHOWN IN THEIR APPROXIMATE LOCATIONS BASED UPON RECORD INFORMATION AVAILABLE AT THE TIME OF PREPARATION OF THESE PLANS. LOCATIONS MAY NOT HAVE BEEN VERIFIED IN THE FIELD AND NO GUARANTIES IS MADE AS TO THE ACCURACY OR COMPLETIENESS OF THE MYDERMATION SHOWN. IT SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR TO DETERMINE THE EXISTENCE AND LOCATION OF THE UTILITIES SHOWN ON THESE PLANS OR ROBICATED IN THE FIELD BY LOCATING SERVICES. ANY ADDITIONAL COSTS MICURIED AS A RESULT OF THE CONTRACTOR'S PAULIES TO VERRY THE LOCATIONS OF EXISTING UTILITIES PROOR TO THE EGERNING OF CONSTRUCTION IN THEIR VICINITY SHALL BE BORNE BY THE CONTRACTOR AND ASSUMED INCLUDED IN THE CONTRACT. THE CONTRACTOR IS TO VERRY ALL CONNECTION POINTS WITH THE ESTISTING UTILITIES THE CONTRACTOR IS RESPONSIBLE FOR ANY DAMAGE CAUSED TO THE EMSTING UTILITIES AND UTILITY STRUCTURES THAT ARE TO REMAIN. IF CONTLICTS WITH EXISTING UTILITIES AND UTILITY STRUCTURES THAT ARE TO REMAIN. IF CONTLICTS WITH EXISTING UTILITIES OCCUR. THE CONTRACTOR SHALL NOTIFY THE ENGINEER PRICA TO CONSTRUCTION TO DETERMINE IF ANY FIELD ADJUSTMENTS SHOULD BE MADE.
- ENSURE MINIMUM COVER OVER ALL STORM DRAIN PIPES PER MANUFACTURER'S RECOMMENDATIONS. NOTIFY ENGINEER IF MINIMUM COVER CANNOT BE ATTAINED.
- THE CONTRACTOR SHALL ADJUST TO GRADE ALL EXISTING UTILITIES AS NEEDED PER LOCAL GOVERNING AGENCY'S STANDARDS AND SPECIFICATIONS.
- NOTIFY ENGINEER OF ANY DISCREPANCIES IN DESIGN OR STAKING BEFORE PLACING CONCRETE, ASPHALT, OR STORM DRAIN STRUCTURES OR PIPES.

SALT LAKE CITY

45 W. 10000 S., Suite 500 Sandy, UT 84070 Phone: 801.255.0529

LAYTON Phone: 801.547,1100

TOOELE

Phone: 435.843.3590

CEDAR CITY Phone: 435.865.1453

RICHFIELD

Phone: 435,896,2983

WWW.ENSIGNENG.COM

6740 SOUTH 1300 EAST, STE 200 SALT LAKE CITY, UTAH, 84121

DUAINE RASMUSSEN

CONTACT: DUAINE RASMUSSEN

PHONE:

801-000-0000

CASTLEWOOD AMERICAN FORK APTS

AMERICAN FORK, UTAH

900 WEST 200 SOUTH

GRADING PLAN

PROJECT NUMBER	PRINT DATE
8618B	9/4/20
DRAYN BY	CHECKED BY
E. FISHER	J. FORD
PROJECT WAVAGER J. FORD	

SEE DRAWING C-304

50432:2021 PG 12 of 73 **EHT**

- ALL WORK TO COMPLY WITH THE GOVERNING AGENCY'S STANDARDS AND SPECIFICATIONS
- ALL IMPROVEMENTS MUST COMPLY WITH ADA STANDARDS AND RECOMMENDATIONS
- 4. THE CONTRACTOR SHALL BECOME FAMILIAR WITH THE EXISTING SOIL CONDITIONS.
- ELEVATIONS HAVE BEEN TRUNCATED FOR CLARITY. XXXX REPRESENTS AN ELEVATION OF 45XXXX ON THESE PLANS.

- EXISTING UNDERGROUND UTILITIES AND IMPROVEMENTS ARE SHOWN IN THEIR APPROXIMATE LOCATIONS BASED UPON RECORD INFORMATION AVAILABLE AT THE TIME OF PREPARATION OF THESE PLANS. LOCATIONS MAY NOT HAVE BEEN VERNED BY THE FEEL DAYS ON BY CONTRACTOR TO EXPERIMENT HE DESTRUCES AND THE INFORMATION SHOWN. IT SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR TO DETERMINE THE DESTRUCE AND LOCATION OF THE UTILITIES SHOWN ON THESE PLANS ON ROCKETED IN THE REPORT BY LOCATIONS SHOWED. ANY ADDITIONAL COSTS INCURRED AS A REQUIT OF THE CONTRACTOR'S FAILURE TO VERRY THE LOCATIONS OF EXISTING UTILITIES RIGHT TO THE EGENINING OF CONSTRUCTION IN THEIR VICINITY SHALL BE BORNE BY THE CONTRACTOR AND ASSIMED INCLIDED IN THE CONTRACT. THE CONTRACTOR IS TO VERRY ALL CONNECTION POINTS WITH THE ESTITING UTILITIES. THE CONTRACTOR IS RESPONSIBLE FOR ANY DAMAGE CAUSED TO THE EXISTING UTILITIES. THE CONTRACTOR IS RESPONSIBLE FOR ANY DAMAGE CAUSED TO THE EXISTING UTILITIES AND UTILITY STRUCTURES THAT ARE TO REMAIN. IF CONTRACTS WITH EXISTING UTILITIES OCCUR. THE CONTRACTOR SHALL NOTIFY THE ENGINEER PRIOR TO CONSTRUCTION TO DETERMINE IF ANY FIELD ADJUSTMENTS SHOULD BE MADE.
- ALL STORM DRAIN INFRASTRUCTURE TO BE INSTALLED PER GOVERNING AGENCY OR APWA STANDARD PLANS AND SPECIFICATIONS.
- ENSURE MINIMUM COVER OVER ALL STORM DRAIN PIPES PER MANUFACTURER'S RECOMMENDATIONS. NOTIFY ENGIN IF MINIMUM COVER CANNOT BE ATTAINED.
- ALL FACILITIES WITH DOWNSPOUTS/ROOF DRAINS SHALL BE CONNECTED TO THE STORM DRAIN SYSTEM. SEE PLPLANS FOR DOWNSPOUT/ROOF DRAIN LOCATIONS AND SIZES. ALL ROOF DRAINS TO HAVE MINIMUM 1% SLOPE.
- THE CONTRACTOR SHALL ADJUST TO GRADE ALL EXISTING UTILITIES AS NEEDED PER LOCAL GOVERNING AGENCY'S STANDARDS AND SPECIFICATIONS.

SALT LAKE CITY

45 W. 10000 S., Suite 500 Sandy, UT 84070 Phone: 801.255.0529

Phone: 801.547.1100

TOOELE

Phone: 435 843 3590

CEDAR CITY Phone: 435.865.1453

RICHFIELD Phone: 435.896.2983

WWW.ENSIGNENG.COM

FOR: DUAINE RASMUSSEN 8740 SOUTH 1300 EAST, STE 200 SALT LAKE CITY, UTAH, 84121

CONTAGT:
DUAINE RASMUSSEN
PHONE: 801-000-0000

CASTLEWOOD AMERICAN FORK APTS

AMERICAN FORK, UTAH 900 WEST 200 SOUTH

GRADING PLAN

CHECKED BY DRAYMBY E. FISHER PROJECT IA

ENGINEERING •GEOTECHNICAL •ENVIRONMENTAL (ESÁ I & II) •

GEOTECHNICAL ENGINEERING STUDY

American Fork Apartments

About 900 West 200 South American Fork, Utah

CMT PROJECT NO. 13729

FOR:

Castlewood Development 6740 South 1300 East, Suite 200 Salt Lake City, Utah 84121

December 11, 2019

December 11, 2019

Mr. Russell Harris Castlewood Development 6740 South 1300 East, Suite 200 Salt Lake City, Utah 84121

Subject:

Geotechnical Engineering Study

Proposed American Fork Apartments

900 West 200 South American Fork, Utah

CMT Project Number: 13729

Mr. Harris:

Submitted herewith is the report of our geotechnical engineering study for the subject site. This report contains the results of our findings and an engineering interpretation of the results with respect to the available project characteristics. It also contains recommendations to aid in the design and construction of the earth related phases of this project.

On November 12 and 13, 2019, a CMT Engineering Laboratories (CMT) geologist was on-site and supervised the drilling of 12 bore holes extending to depths of about 16.5 to 31.5 feet below the existing ground surface. Soil samples were obtained during the field operations and subsequently transported to our laboratory for further testing and observation.

Conventional spread and/or continuous footings may be utilized to support the proposed structures, provided the recommendations in this report are followed. A detailed discussion of design and construction criteria is presented in this report.

We appreciate the opportunity to work with you at this stage of the project. CMT offers a full range of Geotechnical Engineering, Geological, Material Testing, Special Inspection services, and Phase I and II Environmental Site Assessments. With 9 offices throughout Utah, Idaho and Arizona, our staff is capable of efficiently serving your project needs. If we can be of further assistance or if you have any questions regarding this project, please do not hesitate to contact us at (801) 492-4132.

CERTIFICATE: I hereby certify that I am a licensed professional engineer, as defined in the "Sensitive Lands Ordinance" Section of the American Fork City Ordinances. I have examined the report to which this certificate is attached and the information and conclusions contained therein are, without any reasonable reservation not stated therein, accurate and complete. The procedures and tests used in said report meet minimum applicable professional standards.

Sincerely,

CMT Engineering Laboratories

Jeffrey J. Egbert, P.E., LEED A.P., M. ASC

Senior Geotechnical Engineer

Reviewed by:

William G. Turner, P.E., M. ASCE Senior Geotechnical Engineer

Willen FJum

CMTENGINEERING LABORATORIES

TABLE OF CONTENTS

1.0 INTRODUCTION	
1.1 General	
1.2 Objectives, Scope and Authorization.	
1.3 Description of Proposed Construction.	2
1.4 Executive Summary	2
2.0 FIELD EXPLORATION	
3.0 LABORATORY TESTING	
4.0 GEOLOGIC & SEISMIC CONDITIONS	4
4.1 Geologic Setting	4
4.2 Faulting	
4.3 Seismicity	
4.3.1 Site Class	7
4.3.2 Ground Motions	
4.3.3 Liquefaction	8
4.4 Other Geologic Hazards	9
5.0 SITE CONDITIONS	
5.1 Surface Conditions	
5.2 Subsurface Soils	
5.3 Groundwater	10
5.4 Site Subsurface Variations	
6.0 SITE PREPARATION AND GRADING	
<u>6.1 General</u>	
6.2 Temporary Excavations	
6.3 Fill Material	
6.4 Fill Placement and Compaction	
6.5 Utility Trenches	
6.6 Stabilization	
7.0 FOUNDATION RECOMMENDATIONS	
7.1 Foundation Recommendations	15
7.2 Installation	
7.3 Estimated Settlement	
7.4 Lateral Resistance	
8.0 LATERAL EARTH PRESSURES	
9.0 FLOOR SLABS	
10.0 DRAINAGE RECOMMENDATIONS	
11.0 PAVEMENTS	
12.0 QUALITY CONTROL	
12.1 Field Observations	
12.2 Fill Compaction	
12.3 Excavations	
12.4 Vibration Monitoring	
13.0 LIMITATIONS	19

APPENDIX

Figure 1: Site Map

Figures 2 - 13: Bore Hole Logs Figure 14: Key to Symbols Calculations (4 Pages)

Page 1

Geotechnical Engineering StudyProposed American Fork Apartments, American Fork, Utah
CMT Project No. 13729

1.0 INTRODUCTION

1.1 General

CMT Engineering Laboratories (CMT) was retained to conduct a geotechnical subsurface study for a proposed high density residential development. The site is situated on the south side of 200 South Street, and the east side of 900 West Street in American Fork, Utah, as shown in the **Vicinity Map** below.

VICINITY MAP

1.2 Objectives, Scope and Authorization

The objectives and scope of our study were planned in communications between Mr. Russell Harris of Castlewood Development, and Mr. Jeffrey Egbert of CMT Engineering Laboratories (CMT). In general, the objectives of this study were to define and evaluate the subsurface soil and groundwater conditions at the site, and provide appropriate foundation, earthwork, pavement and seismic recommendations to be utilized in the design and construction of the proposed development.

In accomplishing these objectives, our scope of work has included performing field exploration, which consisted of the drilling/logging/sampling of 12 bore holes, performing laboratory testing on representative samples of the subsurface soils collected in the bore holes, and conducting an office program, which consisted of correlating

Proposed American Fork Apartments, American Fork, Utah CMT Project No. 13729 Page 2

available data, performing engineering analyses, and preparing this summary report. This scope of work was authorized by returning a signed copy of our proposal dated October 11, 2019 and executed on October 28, 2019.

1.3 Description of Proposed Construction

We understand that the proposed construction consists of six multi-level apartment buildings, smaller clubhouse and leasing office buildings, and a swimming pool. We project that the buildings will be of conventional wood or light steel frame construction supported on concrete foundations. Maximum wall loads are projected to not exceed 12,000 pounds per linear foot and column loads to not exceed 200,000 pounds. Floor slab loads are anticipated to be relatively light, with an average uniform loading not exceeding 100 pounds per square foot. If the loading conditions are different than we have projected, please notify us so that any appropriate modifications to our conclusions and recommendations contained herein can be made.

Paved parking/drive areas will also be constructed, which we anticipate will utilize asphalt and possibly concrete pavements. Traffic is projected to consist of mostly automobiles and light trucks, a few daily medium-weight delivery trucks, a weekly garbage truck, and an occasional fire truck.

Site development will require some earthwork in the form of minor cutting and filling. A site grading plan was not available at the time of this report, but we project that maximum cuts and fills may be on the order of 3 to 4 feet. If deeper cuts or fills are planned, CMT should be notified to provide additional recommendations, if needed.

1.4 Executive Summary

The most significant geotechnical aspects regarding site development include the following:

- 1. An existing residence in the northeast portion of the site to be razed and removed.
- 2. Approximately 1.5 to 3.5 feet of fill, considered non-engineered, on the surface of a significant portion of the site, and topsoil approximately 12 inches in thickness on the remaining portions of the site. Foundations and floor slabs should not be placed on topsoil or non-engineered fill.
- 3. Groundwater was encountered during drilling and later measured at depths as shallow as 1.5 feet below the existing site grades. Dewatering of excavations should be anticipated.
- 4. Subsurface natural soils predominately consist of CLAY (CL), but also include SAND (SC, SP), and occasional GRAVEL (GC) layers, to the maximum depth explored of 31.5 feet below the existing site grades. Some of the subsurface sand layers are potentially liquefiable during a seismic event, which could result in additional differential settlement and/or lateral movement.
- 5. Floor slabs and more lightly loaded footings may be constructed on suitable undisturbed natural soils. More heavily loaded footings will require structural/engineered fill to limit settlements. Additional reinforcement and tying foundations together with grade beams is also recommended.

CMT must assess that topsoil, non-engineered fill, debris, disturbed or unsuitable soils have been removed and that suitable soils have been encountered prior to placing site grading fills, footings, slabs, and pavements.

Geotechnical Engineering Study
Proposed American Fork Apartments, American Fork, Utah

CMT Project No. 13729

Page 3

In the following sections, detailed discussions pertaining to the site and subsurface descriptions, geologic/seismic setting, earthwork, foundations, lateral resistance, lateral pressure, floor slabs, and pavements are provided.

2.0 FIELD EXPLORATION

In order to define and evaluate the subsurface soil and groundwater conditions 12 bore holes were drilled at the site to depths of approximately 6.5 to 31.5 feet below the existing ground surface. Locations of the bore holes are presented on **Figure 1**.

Samples of the subsurface soils encountered in the bore holes were collected at varying depths through the hollow stem drill augers. Relatively undisturbed samples were obtained by driving a split-spoon sampler with 2.5-inch outside diameter rings/liners into the undisturbed soils below the drill augers. Disturbed samples were collected utilizing a standard split spoon sampler. This standard split spoon sampler was driven 18 inches into the soils below the drill augers using a 140 pound hammer free-falling a distance of 30 inches. The number of hammer blows needed for each 6 inch interval was recorded. The sum of the hammer blows for the final 12 inches of penetration is known as a standard penetration test and this 'blow count' was recorded on the bore hole logs. The blow count provides a reasonable approximation of the relative density of granular soils, but only a limited indication of the relative consistency of fine grained soils because the consistency of these soils is significantly influenced by the moisture content.

Soil samples were collected as described above, and were classified in the field in general accordance with ASTM¹ D-2488 based upon visual and textural examination. These field classifications were supplemented by subsequent examination and testing of select samples in our laboratory. Logs of the bore holes, including a description of the soil strata encountered, is presented on each individual Bore Hole Log, **Figures 2 through 13**, included in the Appendix. Sampling information and other pertinent data and observations are also included on the logs. In addition, a Key to Symbols defining the terms and symbols used on the logs is provided as **Figure 14** in the Appendix.

Following completion of drilling operations, 1.25-inch diameter slotted PVC pipe was installed in bore holes B-5, B-7, and B-12 to allow subsequent water level measurements.

3.0 LABORATORY TESTING

Selected samples of the subsurface soils were subjected to various laboratory tests to assess pertinent engineering properties, as follows:

- 1. Moisture Content, ASTM D-2216, Percent moisture representative of field conditions
- 2. Dry Density, ASTM D-2937, Dry unit weight representing field conditions
- 3. Atterberg Limits, ASTM D-4318, Plasticity and workability

¹American Society for Testing and Materials

Proposed American Fork Apartments, American Fork, Utah CMT Project No. 13729 Page 4

- 4. Gradation Analysis, ASTM D-1140/C-117, Grain Size Analysis
- 5. One Dimension Consolidation, ASTM D-2435, Consolidation properties

To provide data necessary for our settlement analyses, a consolidation test was performed on each of 4 representative sample of the surficial clay soils encountered across the site. Based upon data obtained from the consolidation testing, the clay soils at this site are moderately over-consolidated and moderately compressible under additional loading. Detailed results of the consolidation tests are maintained within our files and can be transmitted to you, if so desired.

Laboratory test results are presented on the bore hole logs (Figures 2 through 13) and in the following Lab Summary Table:

LAB SUMMARY TABLE

					SALIAIWIKI IWI							
Bore	Depth	Sample	Soil	Moisture [']	Dry Denstiy	G	radatio	on	Atter	berg L	imits	Collapse (-) or
Hole	(feet)	Type	Class	Content (%)	(pcf)		Sand	Fines	LL	PL	PI	Expansion (+)
B-1	5	Rings	CL	31.4	90.6							
	7.5	SPT	SC	23.2					ر			
	10	SPT	SC	26.3				23				
	20	SPT	CL	48.2					46	22	24	
B-3	2.5	Rings	CL	31.0	89.2							
	15	SPT	CL	34.0					33	23	10	
B-5	5	Rings	SC	17.0		17	48	35				
	10	Rings	SC	21.9				35		<u> </u>		
B-6	2.5	Rings	CL	24.4	100.8				29	20	9	-0.5%
	5	SPT	SC	24.7				43				
B-7	5	Rings	CL	31.2	93.4				29	19	10	-0.5%
B-8	5	Rings	CL	28.2	98.1							
	10	SPT	CL	26.9		10	37	53				
	15	Rings	CL	32.7	89.3							
B-10	2.5	Rings	CL	30.7				79				
	5	SPT	SC	26.2				43				
	10	SPT	CL	24.3				55				
	15	SPT	CL	35.2					32	23	9	
B-12	5	SPT	ML	25.5				57				
	15	SPT	CL	27.5				74				
	20	SPT	CL	44.9		<u> </u>			36	23	13	

4.0 GEOLOGIC & SEISMIC CONDITIONS

4.1 Geologic Setting

The subject site is located in the northeast portion of Utah Valley in north-central Utah at an elevation of approximately 4,528 feet above sea level. Utah Valley is a deep, sediment-filled basin that is part of the Basin

Proposed American Fork Apartments, American Fork, Utah CMT Project No. 13729 Page 5

and Range Physiographic Province. The valley was formed by extensional tectonic processes during the Tertiary and Quaternary geologic time periods, and is bordered by the Wasatch Mountain Range on the east and Lake Mountain and West Mountain on the west. Utah Valley is located within the Intermountain Seismic Belt, a zone of ongoing tectonism and seismic activity extending from southwestern Montana to southwestern Utah. The active (evidence of movement in the last 10,000 years) Wasatch Fault Zone is part of the Intermountain Seismic Belt and extends from southeastern Idaho to central Utah along the western base of the Wasatch Mountain Range.

Much of northwestern Utah, including Utah Valley, was also previously covered by the Pleistocene age Lake Bonneville. Utah Lake, which currently occupies much of the western portion of the valley, is a remnant of this ancient fresh water lake. Lake Bonneville reached a high-stand elevation of between approximately 5,160 and 5,200 feet above sea level at between 18,500 and 17,400 years ago. Approximately 17,400 years ago, the lake breached its basin in southeastern Idaho and dropped by almost 300 feet relatively fast as water drained into the Snake River. Following this catastrophic release, the lake level continued to drop slowly over time, primarily driven by drier climatic conditions, until reaching the current levels of Utah Lake and the larger Great Salt Lake to the north. Shoreline terraces formed at the high-stand elevation of the lake and several subsequent lower lake levels are visible in places on the mountain slopes surrounding the valley. Much of the sediment within Utah Valley was deposited as lacustrine sediments during both the transgressive (rise) and regressive (fall) phases of Lake Bonneville and in older, pre-Bonneville lakes that previously occupied the basin.

The geology of USGS "Pelican Point, Utah" 7.5 Minute Quadrangle, which includes the location of the subject site, has been mapped by the Utah Geological Survey.² The surficial geology on the majority of the subject site and adjacent properties is mapped as "Lacustrine silt and clay" (Map Unit Qlmp) dated to be upper Pleistocene. On the east-central margin of the site Unit Qlmp is mapped to be overlain by "Alluvial-fan deposits, regressive (Provo) phase of Lake Bonneville" (Map Unit Qafp) dated to be upper Pleistocene. Unit QImp is described in the referenced mapping as "Calcareous silt (marl) and clay with minor fine sand; typically laminated or thin bedded; ostracodes locally common; deposited in quiet water in moderately deep parts of the Bonneville basin and in sheltered bays; overlies lacustrine silt and clay of the transgressive phase and grades upslope into lacustrine sand and silt (QIsp); locally buried by loess veneer; regressive lacustrine shorelines typically poorly developed; extensive exposure within two miles (3 km) of the Utah Lake shore incised by young alluvial fans (Qafy), and small remnants south of Pelican Point. Machette (1992) reported that silt and clay of the regressive phase can be differentiated from silt and clay of the transgressive phase by the presence of conchoidal fractures in blocks of transgressive deposits and their absence in regressive deposits, but QImp may include some undifferentiated transgressive deposits. Exposed thickness less than 15 feet (5 m), but total thickness may exceed several tens of feet." Unit Qafp is described as "Poorly to moderately sorted, pebble to cobble gravel, locally bouldery, with a matrix of sand, silt, and minor clay; clasts typically angular, but well rounded where derived from Lake Bonneville gravel; medium to very thick bedded; deposited by debris flows, debris floods, and stream flow from American Fork as the river lost confinement beyond the American Fork delta front in the adjacent Lehi quadrangle (Biek, 2005b). The B soil horizon of paleosols developed on regressive-phase alluvial-fan deposits commonly shows an intensification of brown colors due to oxidation of iron-bearing minerals or a slight accumulation of clay, and may include a pedogenic accumulation of calcium carbonate as thin, discontinuous coatings on gravel; Machette

² Solomon, B.J., Biek, R.F., and Ritter, S.M., 2009, Geologic Map of the Pelican Point Quadrangle, Utah County, Utah; Utah Geological Survey Map 244, Scale 1:24,000.

Proposed American Fork Apartments, American Fork, Utah CMT Project No. 13729 Page 6

(1992), using the terminology of Birkeland (1984), designated the soil profile of this unit and others of similar age as A/Bw/Bk(or Cox) to A/Bt(weak)/Bk(or Cox). Exposed thickness less than 30 feet (10 m)." No fill has been mapped at the location of the property on the geologic map. Refer to the **Geologic Map**, shown on the following page.

4.2 Faulting

No surface fault traces are shown on the referenced geologic map crossing or projecting toward the subject site. The nearest mapped active fault is the Provo Segment of the Wasatch Fault Zone approximately 4.7 miles to the east.

The Wasatch Fault is considered a "normal" fault because movement along the fault is typically vertical. The east side of the fault, or the mountain block, typically moves upward relative to the valley block on the west side of the fault. The fault generally dips to the west below the valleys. In an earthquake, the point where the fault initially ruptures is called the 'focus" and generally occurs about 10 miles below the surface. The point on the surface directly above the focus, the epicenter, typically out in the valley, is usually where the strongest ground shaking occurs. The Wasatch Fault is one of the longest and most active normal faults in the world.

Page 7

Geotechnical Engineering StudyProposed American Fork Apartments, American Fork, Utah
CMT Project No. 13729

4.3 Seismicity

4.3.1 Site Class

Utah has adopted the International Building Code (IBC) 2018, which determines the seismic hazard for a site based upon 2014 mapping of bedrock accelerations prepared by the United States Geologic Survey (USGS) and the soil site class. The USGS values are presented on maps incorporated into the IBC code and are also available based on latitude and longitude coordinates (grid points). For site class definitions, IBC 2018 Section 1613.2.2 refers to Chapter 20, Site Classification Procedure for Seismic Design, of ASCE³ 7-16. Given the subsurface soils encountered in our explorations at the site, and the subsurface conditions encountered in a bore hole drilled for the Pioneer Crossing Interchange approximately 2,000 feet north of the site, which extended to a depth of 103 feet, it is our opinion the site best fits Site Class D – Stiff Soil Profile (with data), which we recommend for seismic structural design.

4.3.2 Ground Motions

The 2014 USGS mapping utilized by the IBC provides values of peak ground, short period and long period accelerations for the Site Class B/C boundary and the Maximum Considered Earthquake (MCE). This Site Class B/C boundary represents average bedrock values for the Western United States and must be corrected for local soil conditions. The following table summarizes the peak ground, short period and long period accelerations for the MCE event, and incorporates appropriate soil correction factors and any possible exceptions for a Site Class D soil profile at site grid coordinates of 40.3710 degrees north latitude and -111.8208 degrees west longitude (also see response spectrum on the following page):

³American Society of Civil Engineers

Proposed American Fork Apartments, American Fork, Utah CMT Project No. 13729 Page 8

SPECTRAL ACCELERATION VALUE, T	SITE CLASS B/C BOUNDARY [mapped values] (g)		SITE CLASS D* [adjusted for site class effects] (g)		DESIGN VALUES (g)
Peak Ground Acceleration	PGA = 0.555	F _{pga} = 1.100	PGA _M = 0.611	1.000	PGA _M = 0.611
0.2 Seconds (Long Period	S _S = 1.241	F _a = 1.004	S _{MS} = 1.245	0.667	$S_{DS} = 0.830$
Acceleration)	(exceptions, if any)	$F_a = (N/A)$	$S_{MS} = (N/A)$	0.667	$S_{DS} = (N/A)$
1.0 Second (Long Period	$S_1 = 0.449$	$F_v = N/A$	$S_{M1} = N/A$	0.667	$S_{D1} = N/A$
Acceleration)	(exceptions, if any)	$F_{v} = (1.851)$	$S_{M1} = (0.831)$	0.667	$S_{D1} = (0.554)$

NOTES:

* Site Class D With Data

2. Site Class:

D

3. Have data to verify?

yes

4. ASCE 7-16 requires Site Specific Ground Motion Hazard Analysis (S1 ≥ 0.2), OR Can Use Exception 2

4.3.3 Liquefaction

The site is located within an area designated by the Utah Geologic Survey⁴, and in the American Fork Sensitive Lands Ordinance⁵ as having "High" liquefaction potential. Liquefaction is defined as the condition when saturated, loose, sandy soils lose their support capabilities because of excessive pore water pressure which develops during a seismic event. Clayey soils, even if saturated, will generally not liquefy during a major seismic event.

^{1.} $T_L = 8$ seconds

⁴ Utah Geological Survey, "Liquefaction-Potential Map for a Part of Utah County, Utah," Utah Geological Survey Public Information Series 28, August 1994. https://ugspub.nr.utah.gov/publications/public_information/pi-28.pdf

⁵ American Fork City Sensitive Lands, Sensitive Lands Ordinance and Reference Materials, 2007, Proposed Liquefaction Hazards Map

Proposed American Fork Apartments, American Fork, Utah CMT Project No. 13729 Page 9

We evaluated the liquefaction potential of the site using the procedures described in Youd et al⁶ and Idriss & Boulanger⁷, and only apply to the saturated sandy deposits. Our evaluation indicates isolated zones of the saturated sandy soils could liquefy under a major seismic event. Maximum anticipated settlement resulting from the liquefaction would be in the range of 1.0 to 2.5 inches. This amount of settlement could be accounted for in structural design to provide life safety, although some structural damage would be possible. If such liquefaction-induced settlements are not acceptable, we can provide mitigation strategies, such as soil densification methods, to treat susceptible soils. The evaluation also indicates that lateral spreading due to liquefaction could also occur with estimated movements of 0.5 to 1.0 foot.

4.4 Other Geologic Hazards

No landslide deposits or features are mapped on or adjacent to the site. The site is not located within a currently known or mapped potential debris flow, stream flooding, or rock fall hazard area.

5.0 SITE CONDITIONS

5.1 Surface Conditions

At the time the field work was performed for this study there was an existing residence in the northeast portion of the site and a foundation from an old barn. The residence had several large trees in the yard. The remainder of the site was undeveloped and parts were vegetated with grasses and weeds. Some grading had occurred on the west and south portions of the site likely during construction of 900 West Street and 350 South Street. Overall, the site is relatively flat, with a slight slope downward to the south. Based upon aerial photos dating back to 1993 that are readily available on the internet, the site was part of a cultivated field. The existing residence appears to have been constructed between 1993 and 1997. The remainder of the site appears to have been actively farmed until sometime between 2018 and 2019 when construction of 900 West began. The site is bordered on the north by 200 South Street, on the south by 350 South Street, on the east by a high density residential (townhome) development, and on the west by 900 West Street (see Vicinity Map in Section 1.1 above).

5.2 Subsurface Soils

At the locations of bore holes B-1 to B-8, and B-12 (mainly the south and west sides of the site), we encountered sandy gravelly fill soils on the surface, extending to depths of about 1.5 to 2 feet below the surface, except at the location of B-12 where the fill extended about 3.5 feet below the surface. We consider the fill to be non-engineered. At the locations of bore holes B-10 and B-11, about 12 inches to clayey topsoil was noted at the

⁷ Idriss, I.M. and Boulanger, R.W., December 2010, "SPT-Based Liquefaction Triggering Procedures," Department of Civil & Environmental Engineering, University of California at Davis, Report No. UCD/CGM 10/02, 259 p.

⁶ Youd, T.L.; Idriss, I.M.; Andrus, R.D.; Arango, I.; Castro, G.; Christian, J.T.; Dobry, R.; Finn, W.D.L.; Harder, L.F. Jr.; Hynes, M.E.; Ishihara, K.; Koester, J.P.; Liao, S.C.; Marcuson, W.F. III; Martin, G.R.; Mitchell, J.K.; Moriwaki, Y.; Power, M.S.; Robertson, P.K.; Seed, R.B.; and Stokoe, K.H. II; October 2001, "Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils," ASCE Journal of Geotechnical and Geoenvironmental Engineering, p 817-833

Proposed American Fork Apartments, American Fork, Utah CMT Project No. 13729 Page 10

surface. Natural soils encountered beneath the fill and topsoil consisted predominately of CLAY (CL) with varying amounts of sand and/or sand seams, but also Clayey SAND (SC) layers, and an occasional Sandy SILT (ML) layer, Poorly Graded SAND (SP) layer, and Clayey GRAVEL (GC) layer, extending to the bottom of the bore holes.

The clay and silt soils were moist to wet, light brown to gray in color, and have very soft to stiff consistency based upon the SPT blow counts. In laboratory testing the clay soils also exhibited moderate over consolidation and strength characteristics with moderate compressibility characteristics.

The natural sand and gravel soils were moist to wet, brown to gray in color, and in a loose to medium dense state based upon the SPT blow counts. Some of these layers are potentially liquefiable during a seismic event as discussed in **Section 4.3.3**.

For a more descriptive interpretation of subsurface conditions, please refer to the bore hole logs, **Figures 2 through 13**, which graphically represent the subsurface conditions encountered. The lines designating the interface between soil types on the logs generally represent approximate boundaries; in situ, the transition between soil types may be gradual.

5.3 Groundwater

Groundwater was encountered in the bore holes during drilling at depths of about 1.5 to 6.0 feet below existing grades. On December 6, 2019 CMT personnel returned to the site and measured groundwater levels at depths of 2 feet 3 inches to 7 feet 10 inches below the existing site grades within slotted PVC pipes installed in bore holes B-5, B-7, and B-12. These depths to groundwater will likely affect all excavations at this site. Historic groundwater levels were not available at this site and visual indicators (i.e. oxidation) were not observed within the soil samples obtained during drilling; therefore, it is our opinion a groundwater level of 1.5 feet can be used as the historic groundwater level for this project area.

Groundwater levels can fluctuate as much as 1.5 to 2 feet seasonally. Numerous other factors such as heavy precipitation, irrigation of neighboring land, and other unforeseen factors, may also influence ground water elevations at the site. The detailed evaluation of these and other factors, which may be responsible for ground water fluctuations, is beyond the scope of this study.

5.4 Site Subsurface Variations

Based on the results of the subsurface explorations and our experience, variations in the continuity and nature of subsurface conditions should be anticipated. Due to the heterogeneous characteristics of natural soils, care should be taken in interpolating or extrapolating subsurface conditions between or beyond the exploratory locations.

Page 11

Geotechnical Engineering Study
Proposed American Fork Apartments, American Fork, Utah
CMT Project No. 13729

6.0 SITE PREPARATION AND GRADING

6.1 General

We understand that the existing residence will be razed and removed. Removal should include floor slabs and other concrete flat work, foundations, and any existing underground utilities that will be abandoned. Resulting excavations that will be below the footprint of new structures or pavements should be backfilled with properly compacted engineered fill.

All deleterious materials should be stripped from the site prior to commencement of construction activities. This includes vegetation, topsoil, loose and disturbed soils, etc. Based upon the conditions observed at the locations of bore holes B-10 and B-11, and likely most of the eastern portion of the site, there is topsoil on the surface of the site which we estimated to be about 12 inches in thickness. When stripping and grubbing, topsoil should be distinguished by the apparent organic content and not solely by color; thus we estimate that topsoil stripping will need to include the upper 6 inches. However, given the past agricultural uses of the site, the upper 12 to 15 inches may have been disturbed during farming. Where trees are located, large roots and/or root balls likely extend deeper and must also be removed from building and pavement areas. Due to the shallow groundwater, stripping and grubbing should be kept to the minimum amount required to remove vegetation and the most significant amount of organic material.

Based upon the surface conditions observed at most of the bore hole locations, approximately 1.5 to as much as 3.5 feet of sandy gravelly soils, considered non-engineered fill (not placed in a controlled manner or tested for compaction) is present on the surface of the site. All non-engineered fill shall be removed from beneath foundation and floor slab areas. Outside of building footprints the potential for settlement of the fill below exterior concrete flatwork and pavements can be reduced, but not eliminated, with proper preparation. As the majority of the fill was found to be about 2 feet in thickness, proper preparation, after grubbing of vegetation and topsoil, shall consist of removing the upper 12 inches, scarifying the exposed surface to a minimum depth of 8 inches, moisture conditioning as needed, and re-compacting the scarified surface in place to 95% of the maximum dry density. The removed 12 inches of fill, if free or organics, debris, etc. may then be replaced in similarly compacted lifts. Prior to placing pavement materials the exposed subgrade must then be proof rolled by passing moderate-weight rubber tire-mounted construction equipment over the surface at least twice. If excessively soft or loose soils are encountered, they must be removed (up to a maximum depth of 2 feet) and replaced with structural fill.

The site should be examined by a CMT geotechnical engineer to assess that suitable natural soils have been exposed and any deleterious materials, loose and/or disturbed soils have been removed or prepared as described above, prior to placing site grading fills, footings, slabs, and pavements.

Fill placed over large areas to raise overall site grades can induce settlements in the underlying natural soils. If more than 3 feet of site grading fill is anticipated over the natural ground surface, we should be notified to assess potential settlements and provide additional recommendations as needed. These recommendations may include placement of the site grading fill far in advance to allow potential settlements to occur prior to construction.

Proposed American Fork Apartments, American Fork, Utah CMT Project No. 13729

Page 12

6.2 Temporary Excavations

Excavations deeper than 8 feet are not anticipated at the site. Groundwater as shallow as 1.5 feet was encountered and later measured at this site. We anticipate that all excavations extending below the existing site grades could encounter groundwater and dewatering of excavations will likely be required.

The natural soils encountered at this site predominantly consisted of clay. In clayey (cohesive) soils, temporary construction excavations not exceeding 4 feet in depth may be constructed with near-vertical side slopes. Temporary excavations up to 8 feet deep, above or below groundwater, may be constructed with side slopes no steeper than one-half horizontal to one vertical (0.5H:1V).

For sandy/gravelly (cohesionless) soils, temporary construction excavations not exceeding 4 feet in depth should be no steeper than one-half horizontal to one vertical (0.5H:1V). For excavations up to 8 feet and above groundwater, side slopes should be no steeper than one horizontal to one vertical (1H:1V). Excavations encountering saturated cohesionless soils will be very difficult to maintain, and will require very flat side slopes and/or shoring, bracing and dewatering.

To reduce disturbance of the natural soils during excavation, we recommend that smooth edge buckets/blades be utilized.

All excavations must be inspected periodically by qualified personnel. If any signs of instability or excessive sloughing are noted, immediate remedial action must be initiated. All excavations should be made following OSHA safety guidelines.

6.3 Fill Material

Following are our recommendations for the various fill types we anticipate will be used at this site:

FILL MATERIAL TYPE	DESCRIPTION RECOMMENDED SPECIFICATION
Structural Fill	Placed below structures, flatwork and pavement. Well-graded sand/gravel mixture, with maximum particle size of 4 inches, a minimum 70% passing 3/4-inch sieve, a maximum 20% passing the No. 200 sieve, and a maximum Plasticity Index of 10.
Site Grading Fill	Placed over larger areas to raise the site grade. Sandy to gravelly soil, with a maximum particle size of 6 inches, a minimum 70% passing 3/4-inch sieve, and a maximum 50% passing No. 200 sieve.
Non-Structural Fill	Placed below non-structural areas, such as landscaping. On-site soils or imported soils, with a maximum particle size of 8 inches, including silt/clay soils not containing excessive amounts of degradable/organic material (see discussion below).
Stabilization Fill	Placed to stabilize soft areas prior to placing structural fill and/or site grading fill. Coarse angular gravels and cobbles 1 inch to 8 inches in size. May also use 1.5- to 2.0-inch gravel placed on stabilization fabric, such as Mirafi RS280i, or equivalent (see Section 6.6).

Proposed American Fork Apartments, American Fork, Utah CMT Project No. 13729 Page 13

On-site soils could be used as site grading fill and non-structural fill, but many of these soils are likely well above optimum moisture content and will be inherently more difficult to work with in proper moisture conditioning (they are very sensitive to changes in moisture content), requiring very close moisture control during placement and compaction. This will be very difficult, if not impossible, during wet and cold periods of the year. We also recommend the site grading fill thickness using on-site soils not exceed 3 feet below structures, to minimize potential settlements.

All fill material should be approved by a CMT geotechnical engineer prior to placement.

6.4 Fill Placement and Compaction

The various types of compaction equipment available have their limitations as to the maximum lift thickness that can be compacted. For example, hand operated equipment is limited to lifts of about 4 inches and most "trench compactors" have a maximum, consistent compaction depth of about 6 inches. Large roller's, depending on soil and moisture conditions, can achieve compaction at 8 to 12 inches. The full thickness of each lift should be compacted to at least the following percentages of the maximum dry density as determined by ASTM D-1557 (or AASHTO⁸ T-180) in accordance with the following recommendations:

LOCATION	TOTAL FILL THICKNESS (FEET)	MINIMUM PERCENTAGE OF MAXIMUM DRY DENSITY
Beneath an area extending at least 4 feet beyond the perimeter of structures, and below flatwork and pavement (applies to structural fill and site grading fill) extending at least 2 feet beyond the perimeter	0 to 5 5 to 8	95 98
Site grading fill outside area defined above	0 to 5 5 to 8	92 95
Utility trenches within structural areas		96
Roadbase and subbase	-	96
Non-structural fill	0 to 5 5 to 8	90 92

Structural fills greater than 8 feet thick are not anticipated at the site. For best compaction results, we recommend that the moisture content for structural fill/backfill be within 2% of optimum. Field density tests should be performed on each lift as necessary to verify that proper compaction is being achieved.

6.5 Utility Trenches

For the bedding zone around the utility, we recommend utilizing sand bedding fill material that meets current APWA⁹ requirements.

⁹ American Public Works Association

⁸ American Association of State Highway and Transportation Officials

Proposed American Fork Apartments, American Fork, Utah CMT Project No. 13729 Page 14

All utility trench backfill material below structurally loaded facilities (foundations, floor slabs, flatwork, parking lots/drive areas, etc.) should be placed at the same density requirements established for structural fill in the previous section.

Most utility companies and local governments are requiring Type A-1a or A-1b (AASHTO Designation) soils (sand/gravel soils with limited fines) be used as backfill over utilities within public rights of way, and the backfill be compacted over the full depth above the bedding zone to at least 96% of the maximum dry density as determined by AASHTO T-180 (ASTM D-1557). The majority of soils at this site will not meet these specifications.

Where the utility does not underlie structurally loaded facilities and public rights of way, on-site fill and natural soils may be utilized as trench backfill above the bedding layer, provided they are properly moisture conditioned and compacted to the minimum requirements stated above in **Section 6.4**.

6.6 Stabilization

The natural clay soils at this site, which predominate near the surface, will be susceptible to rutting and pumping. The likelihood of disturbance or rutting and/or pumping of the existing natural soils is a function of the load applied to the surface, as well as the frequency of the load. Consequently, rutting and pumping can be minimized by avoiding concentrated traffic, minimizing the load applied to the surface by using lighter equipment and/or partial loads, by working in drier times of the year, or by providing a working surface for the equipment. Rubber-tired equipment particularly, because of high pressures, promotes instability in moist/wet, soft soils.

If rutting or pumping occurs, traffic should be stopped and the disturbed soils should be removed and replaced with stabilization material. Typically, a minimum of 18 inches of the disturbed soils must be removed to be effective. However, deeper removal is sometimes required.

To stabilize soft subgrade conditions (if encountered), a mixture of coarse, clean, angular gravels and cobbles and/or 1.5- to 2.0-inch clean gravel should be utilized. Often the amount of gravelly material can be reduced with the use of a geotextile fabric such as Mirafi RS280i, or equivalent. Its use will also help avoid mixing of the subgrade soils with the gravelly material. After excavating the soft/disturbed soils, the fabric should be spread across the bottom of the excavation and up the sides a minimum of 18 inches. Otherwise, it should be placed in accordance with the manufacturer's recommendation, including proper overlaps. The gravel material can then be placed over the fabric in compacted lifts as described above.

7.0 FOUNDATION RECOMMENDATIONS

The following recommendations have been developed on the basis of the previously described project characteristics, the subsurface conditions observed in the field and the laboratory test data, as well as common geotechnical engineering practice.

Proposed American Fork Apartments, American Fork, Utah CMT Project No. 13729

Page 15

7.1 Foundation Recommendations

Based on our geotechnical engineering analyses, the proposed structures may be supported upon conventional spread and/or continuous wall foundations placed on suitable, undisturbed natural soils or on structural fill extending to suitable natural soils (see **Section 7.3 below**). Footings may be designed using a net bearing pressure of 2,000.

The term "net bearing pressure" refers to the pressure imposed by the portion of the structure located above lowest adjacent final grade, thus the weight of the footing and backfill to lowest adjacent final grade need not be considered. The allowable bearing pressure may be increased by 1/3 for temporary loads such as wind and seismic forces.

Due to potential lateral movements of up to 1.0 foot in the event of an earthquake which induces liquefaction in the subsurface sand layers, we also recommend tying foundations together with grade beams and additional reinforcement as determine by the design structural engineer. Or, as indicated in **Section 4.3.3**, we can provide mitigation strategies, such as soil densification methods, to treat susceptible soils.

We also recommend the following:

- 1. Exterior footings subject to frost should be placed at least 30 inches below final grade.
- 2. Interior footings not subject to frost should be placed at least 16 inches below grade.
- 3. Continuous footing widths should be maintained at a minimum of 18 inches.
- 4. Spot footings should be a minimum of 24 inches wide.

7.2 Installation

Under no circumstances shall foundations be placed on non-engineered fill, topsoil with organics, sod, rubbish, construction debris, other deleterious materials, frozen soils, or within ponded water.

If unsuitable soils are encountered, they must be completely removed and replaced with properly compacted structural fill. Deep, large roots may be encountered where trees and larger bushes are located or were previously located at the site; such large roots should also be removed. Excavation bottoms should be examined by a CMT geotechnical engineer to confirm that suitable bearing soils have been exposed prior to forming for footings or placing structural fill.

All structural fill should meet the requirements for such, and should be placed and compacted in accordance with **Section 6** above. The width of structural replacement fill below footings should be equal to the width of the footing plus 1 foot for each foot of fill thickness. For instance, if the footing width is 2 feet and the structural fill depth beneath the footing is 2 feet, the fill replacement width should be 4 feet, centered beneath the footing.

The minimum thickness of structural fill below footings should be equivalent to one-third the thickness of structural fill below any other portion of the foundations. For example, if footings will cross over an area where

Proposed American Fork Apartments, American Fork, Utah CMT Project No. 13729 Page 16

an old basement was backfilled, and the maximum depth of structural fill used for the backfill is 6 feet, all footings for the new structure should be underlain by a minimum 2 feet of structural fill.

7.3 Estimated Settlement

Foundations designed and constructed in accordance with our recommendations could experience some settlement, but we anticipate that total settlements of footings founded as recommended above will not exceed 1 inch, provided more heavily loaded footings are placed on the minimum structural fill thicknesses recommended below. We project that approximately 50% of the total settlement will initially take place during construction.

FOUNDATIONS	BEARING PRESSURE	LOADING	MINIMUM THICKNESS OF REPLACEMENT STRUCTURAL FILL (feet)
Spread	2,000	Up to 100,000 pounds	0.0
Spread	2,000	100,000+ to 150,000 pounds	1.5
Spread	2,000	150,000+ to 200,000 pounds	2.0
Wall	2,000	Up to 8,000 pounds per lineal foot	0.0
Wall	2,000	8,000+ to 10,000 pounds per lineal foot	1.5
Wall	2,000	10,000+ to 12,000 pounds per lineal foot	2.0

7.4 Lateral Resistance

Lateral loads imposed upon foundations due to wind or seismic forces may be resisted by the development of passive earth pressures and friction between the base of the footings and the supporting soils. In determining frictional resistance, a coefficient of 0.30 for natural clay soils or 0.40 for structural fill, may be utilized for design. Passive resistance provided by properly placed and compacted structural fill above the water table may be considered equivalent to a fluid with a density of 300 pcf. A combination of passive earth resistance and friction may be utilized if the friction component of the total is divided by 1.5.

8.0 LATERAL EARTH PRESSURES

We anticipate that retaining walls up to 4 feet high might be constructed at this site. The lateral earth pressure values given below are for a backfill material that will consist of drained sand/gravel soils (less than 10% passing No. 200 sieve) placed and compacted in accordance with the recommendations presented herein. If other soil types will be used as backfill, we should be notified so that appropriate modifications to these values can be provided, as needed.

The lateral pressures imposed upon subgrade facilities will depend upon the relative rigidity and movement of the backfilled structure. Following are the recommended lateral pressure values, which also assume that the

Proposed American Fork Apartments, American Fork, Utah CMT Project No. 13729 Page 17

soil surface behind the wall is horizontal and that the backfill within 3 feet of the wall will be compacted with hand-operated compacting equipment.

CONDITION	EQUIVALENT FLUID PRESSURE (psf/ft)			
CONDITION	STATIC	SEISMIC		
Active Pressure (wall is allowed to yield, i.e. move away from the soil, with a minimum 0.001H movement/rotation at the top of the wall, where "H" is the total height of the wall)	35	55		
At-Rest Pressure (wall is not allowed to yield)	55			
Passive Pressure (wall moves into the soil)	300	500		

9.0 FLOOR SLABS

Floor slabs may be established upon suitable, undisturbed, natural soils and/or on structural fill extending to suitable natural soils (same as for foundations). Under no circumstances shall floor slabs be established directly on any topsoil, non-engineered fills, loose or disturbed soils, sod, rubbish, construction debris, other deleterious materials, frozen soils, or within ponded water.

In order to facilitate curing of the concrete, we recommend that floor slabs be directly underlain by at least 4 inches of "free-draining" fill, such as "pea" gravel or 3/4-inch quarters to 1-inch minus, clean, gap-graded gravel. To help control normal shrinkage and stress cracking, the floor slabs should have the following features:

- 1. Adequate reinforcement for the anticipated floor loads with the reinforcement continuous through interior floor joints;
- 2. Frequent crack control joints; and
- 3. Non-rigid attachment of the slabs to foundation walls and bearing slabs.

10.0 DRAINAGE RECOMMENDATIONS

It is important to the long-term performance of foundations and floor slabs that water not be allowed to collect near the foundation walls and infiltrate into the underlying soils. We recommend the following:

- 1. All areas around each structure should be sloped to provide drainage away from the foundations. We recommend a minimum slope of 4 inches in the first 10 feet away from the structure. This slope should be maintained throughout the lifetime of the structure.
- 2. All roof drainage should be collected in rain gutters with downspouts designed to discharge at least 10 feet from the foundation walls or well beyond the backfill limits, whichever is greater.
- 3. Adequate compaction of the foundation backfill should be provided. We suggest a minimum of 90% of the maximum laboratory density as determined by ASTM D-1557. Water consolidation methods should not be used under any circumstances.

Proposed American Fork Apartments, American Fork, Utah CMT Project No. 13729 Page 18

- 4. Landscape sprinklers should be aimed away from the foundation walls. The sprinkling systems should be designed with proper drainage and be well-maintained. Over watering should be avoided.
- 5. Other precautions that may become evident during construction.

11.0 PAVEMENTS

All pavement areas must be prepared as discussed above in **Section 6.1**. Under no circumstances shall pavements be established over topsoil, unprepared non-engineered fills, loose or disturbed soils, sod, rubbish, construction debris, other deleterious materials, frozen soils, or within ponded water.

In roadway areas, subsequent to stripping and prior to the placement of pavement materials, the exposed subgrade must be proof rolled by passing moderate-weight rubber tire-mounted construction equipment over the surface at least twice. If excessively soft or otherwise unsuitable soils are encountered, we recommend they be removed to a minimum of 18 inches below the subgrade level and replaced with structural fill.

We anticipate the natural near surface clay soils will exhibit poor pavement support characteristics when saturated or nearly saturated. Based on our laboratory testing experience with similar soils, our pavement design is based upon a California Bearing Ratio (CBR) of 3 for the natural clay soils.

Given the projected traffic as discussed above in **Section 1.3**, the following pavement sections are recommended for the given ESAL's (18-kip equivalent single-axle loads) per day:

	PAVEMENT SECTION THICKNESS (inches)					
MATERIAL		ARKING AREAS ESAL'S per day		DRIVE AREAS (8 ESAL'S per day)		
Asphalt	3	3		3	3	
Concrete			5			6
Road-Base	8	4	5	12	5	5
Subbase	0	6	0	0	8	0
Total Thickness	11	13	10	15	16	11

Untreated base course (UTBC) should conform to city specifications, or to 1-inch-minus UDOT specifications for A–1-a/NP, and have a minimum CBR value of 70%. Material meeting our specification for structural fill can be used for subbase, as long as the fines content (percent passing No. 200 sieve) does not exceed 15%. Roadbase and subbase material should be compacted as recommended above in **Section 6.4**. Asphalt material generally should conform to APWA requirements, having a ½-inch maximum aggregate size, a 75-gyration Superpave mix containing no more than 15% of recycled asphalt (RAP) and a PG58-28 binder.

Concrete pavement should typically have a minimum 28-day strength of 3,000 psi, and should be saw-cut at appropriate intervals and at the proper time to control the locations of shrinkage cracking.

Proposed American Fork Apartments, American Fork, Utah CMT Project No. 13729 Page 19

12.0 QUALITY CONTROL

We recommend that CMT be retained as part of a comprehensive quality control testing and observation program. With CMT onsite we can help facilitate implementation of our recommendations and address, in a timely manner, any subsurface conditions encountered which vary from those described in this report. Without such a program CMT cannot be responsible for application of our recommendations to subsurface conditions which may vary from those described herein. This program may include, but not necessarily be limited to, the following:

12.1 Field Observations

Observations should be completed during all phases of construction such as site preparation, foundation excavation, structural fill placement and concrete placement.

12.2 Fill Compaction

Compaction testing by CMT is required for all structural supporting fill materials. Maximum Dry Density (Modified Proctor, ASTM D-1557) tests should be requested by the contractor immediately after delivery of any fill materials. The maximum density information should then be used for field density tests on each lift as necessary to ensure that the required compaction is being achieved.

12.3 Excavations

All excavation procedures and processes should be observed by a geotechnical engineer from CMT or his representative. In addition, for the recommendations in this report to be valid, all backfill and structural fill placed in trenches and all pavements should be density tested by CMT. We recommend that freshly mixed concrete be tested by CMT in accordance with ASTM designations.

12.4 Vibration Monitoring

Construction activities, particularly site grading and fill placement, can induce vibrations in existing structures adjacent to the site. Such vibrations can cause damage to adjacent buildings, depending on the building composition and underlying soils. It can be prudent to monitor vibrations from construction activities to maintain records that vibrations did not exceed a pre-defined threshold known to potentially cause damage. CMT can provide this monitoring if desired.

13.0 LIMITATIONS

The recommendations provided herein were developed by evaluating the information obtained from the subsurface explorations and soils encountered therein. The exploration logs reflect the subsurface conditions only at the specific location at the particular time designated on the logs. Soil and ground water conditions may differ from conditions encountered at the actual exploration locations. The nature and extent of any variation in the

Proposed American Fork Apartments, American Fork, Utah CMT Project No. 13729

Page 20

explorations may not become evident until during the course of construction. If variations do appear, it may become necessary to re-evaluate the recommendations of this report after we have observed the variation.

Our professional services have been performed, our findings obtained, and our recommendations prepared in accordance with generally accepted geotechnical engineering principles and practices. This warranty is in lieu of all other warranties, either expressed or implied.

We appreciate the opportunity to be of service to you on this project. If we can be of further assistance or if you have any questions regarding this project, please do not hesitate to contact us at (801) 492-4132. To schedule materials testing, please call (801) 381-5141.

APPENDIX SUPPORTING DOCUMENTATION

900 West 200 South, American Fork, Utah

		RING
Cia Mas	Date:	11-Dec-19
Site Map	Job#	13729

Job#

Bore Hole Log

900 West 200 South, American Fork, Utah

Boring Type:

Surface Elev. (approx): N/A

Hollow-Stem Auger

Total Depth: Water Depth: 13729

			e G		Blow	s (N)	<u></u>	(bct)	Gra	adat	ion	Att	erbe	∍rg
Depth (ft)	GRAPHIC LOG	Soil Description	Sample Type	Sample #		Total	Moisture (%)	Dry Density(pcf)	Gravel %	Sand %	Fines %	_	PL.	id
0		Fill: Dark Brown Clayey Fine to Medium Gravel moist, medium dense						_						
		Gray CLAY (CL) with sand, very moist soft		1	1 1	2								
予		grades with sand layer wet			1									\dashv
		grades with calcified sand and clay stiff	X	2	1 12 4	16	31.4	90.6						
		Gray Clayey SAND (SC), wet												
8 -		loose		3	2 2 3	5	23.2				25			
		medium dense		4	2 5	11	26.3				23			
12 -					6									
		Gray CLAY (CL), wet												
16 -		very soft		5	0 0 0	0					-			
20 -					0		40.0					46	22	24
		soft		6	0 1	1	48.2					46	22	24
24 -											-			
		stiff	7	7	1 3 5	8								
		Gray SAND (SP), occasional gravel, wet	_		Ĭ									
28 Ren	narks:	Groundwater encountered during drilling at depth of 4 feet.	L	<u> </u>		<u> </u>			l	<u> </u>	<u>L</u>	<u>1 </u>	igur	 e:

Drilled By: Dirk

Logged By: Olivia R

Bore Hole Log

B-1

900 West 200 South, American Fork, Utah

Boring Type: Hollow-Stem Auger

Total Depth: Water Depth:

31.5'

Date: 11/12/19 Job #: 8/2/37

			Surface Elev. (appro	υx).	IN/A	l	V V <	ater D	epin.	4	' '	J	OD #:	8/2	, 0 ,
			······································			Blow	s (N)		િ	Gra	adat	ion	Att	erbe	erg
				Sample Type			` (,	Moisture (%)	Dry Density(pcf)						Ĭ
Ę,	¥ 8	Soil Description		le T	# 0			Ę.	insi	% :	%	%			
Depth (ft)	GRAPHIC LOG	•		ם	Sample #		Total	oist) De	Gravel %	Sand %	Fines %		.	
Δ	g.			S	SS		2	Ĭ.	ία	Gr	Se	iΞ	二	7	<u>a</u>
28		Gray SAND (SP), occasional gravel, wet													
						ļ									
]	grades with clay layers up to 2" thick													
] : : :		medium dense		8	8 8	17	!							
l			medium dense	7	ľ	9	''								
32 -		END AT 31.5'				-									
32															
	1														
l															
l	1														
36 -															
			•												
	1														
	_														
1															
	1									ŀ					
40 -	4														
	1												İ		
	4					1									
							:								
]								ļ						
44 -	-								İ				ļ		
]				į		1		t .						
1					1	1									
	1					1									
	1									}	,				
48	-											1	1		
	4														
										1					
	1														
	4														
1											}				
52	1														
	4														
1										1					
	1														1
1	+					1			1						
56												<u> </u>			

Remarks

Groundwater encountered during drilling at depth of 4 feet.

Figure

Drilled By: Logged By: Dirk Olivia R

Page:

2 of 2

Bore Hole Log

900 West 200 South, American Fork, Utah

Boring Type: Hollow-Stem Auger Surface Elev. (approx): N/A

Total Depth: Water Depth: Job #: 13729

				_	-	Blow		(9)	(pcf)	Gra	adat	ion	Att	erbe	erg
Depth (ft)	GRAPHIC LOG	Soil Description		Sample Type	Sample #		Total	Moisture (%)	Dry Density(pcf)	Gravel %	Sand %	Fines %	LL	PL	<u>a</u>
0		Fill: Brown to Dark Brown Clayey Sand with gravel, moist													
	\bowtie														ļ
		Brown to Light Brown CLAY (CL), some sand, very moist	soft		9	0	1								
奉			wet			1									
						0	_	,		-					
-		END AT 6.5'	very soft		10	0	0			-					
		END AT 6.5							!						
8 -															
														•	
									l						
12 -	-						:							!	
														!	
16 -															
"															
													•		
	1														
20 -	-				İ										
	-														
24 -					i										
-	-														
	-														
	-														
28	narks:	Groundwater encountered during drilling at depth of 4 feet			<u> </u>				<u> </u>	1	<u> </u>	<u> </u>	<u></u>	l Figur	

Remarks: Groundwater encountered during drilling at depth of 4 feet.

Figure:

Drilled By: Dirk

Logged By: Olivia R

Bore Hole Log

B-3

900 West 200 South, American Fork, Utah

Boring Type: Hollow-Stem Auger Surface Elev. (approx): N/A Total Depth: Water Depth:

21.5

2'

Date: 11/12/19 Job #: 13729

			be		Blow	s (N)	(%)	(bct)	Gra	adat	ion	Att	erbe	erg
Depth (ft)	GRAPHIC LOG	Soil Description	Sample Type	Sample #		Total	Moisture (%)	Dry Density(pcf)	Gravel %	Sand %	Fines %	11	PL	Ы
0		Fill: Dark Brown Sand with clay and gravel, moist												
\\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		Brown CLAY (CL), some organics wet												
- A		soft	X	11	1 2 3	5	31.0	89.2						
-		organics grade out			0									
-		grades with sand		12	1 0	1								
8 -		Brownish-Gray Clayey SAND (SC), wet loose		13	1 2	5								
		Brownish-Gray Clayey SAND (30), wet 1005e		13	3				_					
		Gray CLAY (CL), wet medium stiff	7	14	2	6								
12 -					3									
								į						
					0									
16 -		soft		15	0	1	34					33	23	10
										3	:			
20 -			7	16	0	3								
	////	END AT 21.5'			2									
	-													
24 -		·												
28	arks:	Groundwater encountered during drilling at depth of 2 feet.											igur	

Remarks:

Groundwater encountered during drilling at depth of 2 feet.

Drilled By: Dirk Logged By: Olivia R

Page:

ge: 1 of 1

Bore Hole Log

900 West 200 South, American Fork, Utah

Boring Type: Hollow-Stem Auger Surface Elev. (approx): N/A

Total Depth:

Water Depth: (see Remarks)

Job #: 13729

	o		g.		Blow	/s (N)	(%)	(bcf)	Gra	adat	ion	Att	erbe	erg
Depth (ft)	GRAPHIC LOG	Soil Description	Sample Type	Sample #		Total	Moisture (%)	Dry Density(pcf)	Gravel %	Sand %	Fines %	LL	PL	PI
0		Fill: Dark Brown Clayey Fine to Medium Gravel, moist												
		Brown CLAY (CL), some sand, very moist soft		17	0 2	3								
4 -		35/1			1									
			7	18	0 1 1	2								
,		END AT 6.5'			1									
8 -	-													
	-													
12 -														
16 -	-			:										
							•							
	-												•	
20 -														
24 -														
28 Bom	orko:	Groundwater not encountered during drilling.		<u> </u>									iaure	إ

Remarks: Groundwater not encountered during drilling.

Figure:

Drilled By: Dirk

Logged By: Olivia R

Page:

Bore Hole Log

B-5

900 West 200 South, American Fork, Utah

Boring Type: Hollow-Stem Auger Surface Elev. (approx): N/A Total Depth: 21.5' Water Depth: 5', 5.8

Date: 11/13/19

		Зипасе Еїеч. (аррго					alei D	<u>.</u>						125
			ø		Blow	s (N)	(1	(pct)	Gra	adat	ion	Att	erbe	erg
Depth (ft)	GRAPHIC LOG	Soil Description	Sample Type	Sample #		Total	Moisture (%)	Dry Density(pcf)	Gravel %	Sand %	Fines %	LL	PL	<u>I</u>
0		Fill	1	<u> </u>			_	<u> </u>			_			
	\bowtie											.		
		Brown Sandy CLAY (CL), very moist			2									
				19	3	7								
		medium stiff			4									
4 -														
Ž		Brown Clayey Fine to Medium SAND (SC), some cemneted nodulæt	V		6									
₹.			A	20	5 8	13	17.0		17	48	35			
8 -		·			1									
ľ		loose	7	21	3 4	7								
 														
<u> </u>					5	44	24.0				0.5			
			À	22	6 8	14	21.9				35			
12 -		Gray CLAY (CL) with interbedded fine sand seams, wet	{											
		Clay CEY(1 (CE) With Interpretated line stated sealins, were												
														'
\				22	0									
16 -		soft		23	1 2	3								
			.											
							l							
20 -		medium stiff	7	24	0 2	5								
				24	3									<u> </u>
	1	END AT 21.5'												
	1													
24 -	1													
]													
	1													
1	1													
28	<u> </u>	Groundwater encountered during drilling at depth of 5 feet and measu					<u> </u>		<u> </u>		<u> </u>	Щ.	- Figur	Щ.

Remarks:

Groundwater encountered during drilling at depth of 5 feet and measured on 12/6/19 at depth of 5.8 feet.

Figure:

Slotted PVC pipe installed to depth of 21.5 feet to facilitate water level measurements.

CMTENGINEERING PATOR ILES

Drilled By: Dirk

Logged By: Olivia R

Page: 1 of 1

Bore Hole Log

B-6

900 West 200 South, American Fork, Utah

Boring Type:

Surface Elev. (approx): N/A

Hollow-Stem Auger

Total Depth: Water Depth: 21.5'

Date: 11/13/19 Job #: 13729

)e		Blow	s (N)	(9)	(pct)	Gra	adat	ion	Att	erbe	erg
Depth (ft)	GRAPHIC LOG	Soil Description	Sample Type	Sample #		Total	Moisture (%)	Dry Density(pcf)	Gravel %	Sand %	Fines %	П	PL	<u>P</u>
0 .		Fill												
. 4 -		Brown CLAY (CL), some sand, very moist medium stiff	X	25	2 3 4	7	24.4	101				29	20	9
 \sqrt{2}		grades with alternating sand and clay layers Brown Clayey Sand (SC), very moist loose	7	26	0	1	24.7				43			
8 -		grades with more coarse sand wet			1 1									
0 -		grades with less clay		27	3	5								
10		Brown CLAY (CL), wet	X	28	4 7 8	15								
12 -		grades gray										:		
16 -		medium stiff		29	0 2 2	4								
											į			<u>'</u>
20 -			,	30	0 3	5							!	
i.	<i>\///</i>	END AT 21.5'			2									
24 -	_													
28	<u> </u>	Groundwater encountered during drilling at depth of 6 feet.		<u> </u>		<u> </u>							- igur	

Remarks:

Drilled By: Dirk

Logged By: Olivia R

Page:

1 of 1

Bore Hole Log

900 West 200 South, American Fork, Utah

Boring Type:

Hollow-Stem Auger

Total Depth:

Date: 11/13/19 Job #: 13729

	900 W	est 200 South, American Fork, Utah	Surface Elev. (appro					ater D	epth:	6', 2	2.25'	J	ob #:	137	729
	,			e		Blow	s (N)	(%)	(bct)	Gr	adat	ion	Att	erbe	erg
Depth (ft)	GRAPHIC LOG	Soil Description		Sample Type	Sample #		Total	Moisture (%)	Dry Density(pcf)	Gravel %	Sand %	Fines %	TT	PL	Ы
0		Fill													
¥		Brown CLAY (CL), very moist	soft	7	31	0	2								
4 -						1									
垦		grades with sand	wet	X	32	1 1 1	2	31.2	93.4				29	19	10
8 -			loose	7	33	1 2 3	5								
		grades with layers of clayey sand up to 2" thick				0									
12 -			medium stiff		34	2 2	4								
16 ·		·	soft		35	0 2 1	3								
20		Gray Clayey SAND (SC), wet	loose	7	36	5 4 4	8								
	1	END AT 21.5'													
24	_														,
28		Groundwater encountered during drilling at depth									ļ		<u> </u>	 =igur	

Remarks: Groundwater encountered during drilling at depth of 6 feet and measured on 12/6/19 at depth of 2.25 feet.

Slotted PVC pipe installed to depth of 21.5 feet to facilitate water level measurements.

Drilled By: Dirk

Logged By: Olivia R

Page:

Bore Hole Log

900 West 200 South, American Fork, Utah

Boring Type: Surface Elev. (approx): N/A

Hollow-Stem Auger

Total Depth: Water Depth:

			e		Blow	s (N)	(9)	(bct)	Gra	adat	ion	Att	erbe	erg
Depth (ft)	GRAPHIC LOG	Soil Description	Sample Type	Sample #		Total	Moisture (%)	Dry Density(pcf)	Gravel %	Sand %	Fines %	-	PL	Ы
0		Fill												
		Brown CLAY (CL), very moist			0									
4 -		very soft		37	0	0								
 귳					0			i						
-		grades sandy, some gravel wet soft	X	38	3	6	28.2	98.1				,		
8 -		Brown Clayey SAND (SC), wet loose	7	39	2	3								
		10030		55	2									
		Brown CLAY (CL), wet medium stiff	7	40	1 2	4	26.9		10	37	53			
12 -					2									
		grades gray					- -			ļ				
					4									
16 -			X	41	6 7	13	32.7	89.3		<u> </u>				
		grades with fine sand												
20 -			7	42	3 4	7				1				
					3		-							
24 -					<u> </u>									
		grades with sand layers up to 1" thick stiff		43	5 6 9	15								
28														
	narks:	Groundwater encountered during drilling at depth of 5.5 feet.	-	•	•			•	•	•		; F	igur	<u></u>

Drilled By: Dirk

Logged By: Olivia R

Bore Hole Log

900 West 200 South, American Fork, Utah

Boring Type:

Hollow-Stem Auger Surface Elev. (approx): N/A

Total Depth: Water Depth:

31.5

5.5'

Job #: 8/2/37

			g		Blow	/s (N)	(9)	(bct)	Gra	adat	ion	Att	erbe	erg
Depth (ft)	GRAPHIC LOG	Soil Description	Sample Type	Sample #		Total	Moisture (%)	Dry Density(pcf)	Gravel %	Sand %	Fines %	П	PL	Ы
28		Brown CLAY (CL), very moist - Gray Clayey SAND (SC), wet						1						
		Gray Clayey SAND (SC), wet												
				1	7									
		loose	7	44	4 3	7								•
32 -	7.7.7	END AT 31.5'												
	1													
36 -	1													
	1													
	1													
	-													
40 -	-													
	1													
					ı									
l														
44 -														
	1	•												
	1													
	1													
48 -	-													
	1													
	1													
]													
52 -														
52]	•												
	1													
	1													
	1													
56	arke:	Croundwater encountered during drilling at depth of 5.5 feet		<u> </u>	<u> </u>	<u> </u>	<u> </u>	l					iaur	

Groundwater encountered during drilling at depth of 5.5 feet.

Figure:

Drilled By: Logged By:

Dirk Olivia R

Page:

Bore Hole Log

900 West 200 South, American Fork, Utah

Boring Type: Surface Elev. (approx): N/A

Hollow-Stem Auger

Total Depth: Water Depth:

Job #: 13729

	-	Currace Liev. (appr	+	-					_		· · · · · ·	A 14	!-	
	,		a e		Blow	/s (N)	(%	Dry Density(pcf)	Gra	adat	ion	Att	erbe	erg
Depth (ft)	GRAPHIC LOG	Soil Description	Sample Type	#			Moisture (%)	ısity	%	,0	۰			
eptl	\[\frac{1}{2} \]	Con Description	麊	Sample #		<u></u>	istri	Der	Gravel %	Sand %	Fines %			1
ı			Sar	Saı		Total	δ	Dry	Grž	Sai	Fin	[PL	₫
0		Topsoil												
	1111	Brown CLAY (CL), very moist	1											
록.														1
-		wet			0									
] '		very soft	7	45	0	0					•			
4 -				-	0	<u> </u>						-		
Ι.														
			7	46	0	0								
·					Ŏ									
	-	END AT 6.5'												
8 -												·		
I I														
'	1								ĺ					
.			-											
•														
1]													
12 -	1													
	1													
	-													
16 -	_													
"											-			,
•	1		Ì							ļ				
	-													
1														
I														
20 -	1													
	1													
1]	-												
1														
1	1													
24 -	4													
1	1													
1	-				1.									
1					1									
28														
	arke:	Groundwater encountered during drilling at depth of 2 feet	ل	٠	í		1					<u> </u>	igur	

Groundwater encountered during drilling at depth of 2 feet.

Figure:

Drilled By: Dirk

Logged By: Olivia R

21.5'

American Fork Apartments

Bore Hole Log

900 West 200 South, American Fork, Utah

Hollow-Stem Auger Boring Type: Surface Elev. (approx): N/A

Total Depth: Water Depth:

	0		e e		Blow	s (N)	(%)	(pct)	Gra	adat	ion	Att	erbe	erg
Depth (ft)	GRAPHIC LOG	Soil Description	Sample Type	Sample #		Total	Moisture (%)	Dry Density(pcf)	Gravel %	Sand %	Fines %	I.I.	PL	ᆸ
0		Topsoil												
록,		Brown Clay (CL) with sand wet					·							
					1									
4 -			A	47	2 4	6	30.7				79			
"									ļ	ļ				
		Brown Clayey SAND (SC), wet loose		48	2	3	26.2				43			
-		Ossi CLAV (CL) correspond with			1					-			:	
8 –		Gray CLAY (CL), some sand, wet	7	49	2 2	6								
-				43	4	Ů	ļ		ļ	ļ				
-					2				ļ	ļ				
-		soft		50	1 2	3	24.3				55			
12 -									į					
_														
-														
-					0		25.0					20		
16 -				51	0 2	2	35.2			ļ	_	32	23	9
-														ŕ
-														
-														
20 -		medium stiff	7	52	0 2	5								
		END AT 21.5'			3									
24 -														
. 28	arks:	Groundwater encountered during drilling at depth of 1.5 feet.					<u> </u>						igur	Щ

Drilled By: Dirk Logged By: Olivia R

Bore Hole Log

B-11

900 West 200 South, American Fork, Utah

Boring Type: Hollow-Stem Auger Surface Elev. (approx): N/A Total Depth: Water Depth:

6.5 4' Date: 11/13/19

		Journal Liev. (app.	1		4	vs (N)					ion	Att	erbe	erg
Depth (ft)	GRAPHIC	Soil Description	Sample Type	Sample #	i.	Total	Moisture (%)	Dry Density(pcf)	Gravel %	Sand %	Fines %	TI	PL	I.
0		Topsoil												
 		Brown CLAY (CL), some sand, moist							ļ !					
•					<u> </u>					ļ				
		grades more sandy, some cemented nodules stiff	7	53	2 4	10								
斊		wet		-	6									
					2				-	-				
			7	54	4	8								
 		END AT 6.5'		 	4									
8 -														
.	1	•												'
	1			ļ										
12 -	-													į
	-									į				
	-													
16 -]		İ						E					
						ļ					:			,
	1													
20 -	1													
	1													
	1													
	1													
24 -	-													
	-													
28														
	narks:	Groundwater encountered during drilling at depth of 4 feet.		•	•	_							igur	~

Groundwater encountered during drilling at depth of 4 feet.

Figure:

Drilled By: Dirk

Logged By: Olivia R

Page:

1 of 1

Bore Hole Log

900 West 200 South, American Fork, Utah

Boring Type: Surface Elev. (approx): N/A

Hollow-Stem Auger _ Total Depth:

					Blow	s (N)		ÇĐ)	Gr	adat	ion	Att	erbe	era
Depth (ft)	GRAPHIC LOG	Soil Description	Sample Type	Sample #		Total	Moisture (%)	Dry Density(pcf)	Gravel %	Sand %	Fines %			
0		Fill: Brown Gravel with sand, slightly moist	Š	Ø		Ĕ	Σ	۵	9	S	匝	LF	PL	₫
				55					·					
4 -		Brown CLAY (CL) with sand, very moist												
록.		Brown Sandy SILT (ML) wet			1									
-		loose		56	1 2	3	25.5				57			
		•												
₹-	- 4	Brown Clayey GRAVEL (GC) with sand, wet dense	7	57	2 8	36								
		25.100			28									
					10									
	4			58	12 20	32								
12 -		Brown CLAY (CL), wet												
		grades gray with sand lenses			2									
16 -		stiff	7	59	4 6	. 10	27.5	į			74			
20 -					0							-		
		very soft		60	- 0	0	44.9	į.				36	23	13
		END AT 21.5'												
	1													
24 -														
	-													
	-													
	-													
28	arks.	Groundwater encountered during drilling at depth of 5 feet and measu	<u> </u>		(0/4.0	<u> </u>		<u> </u>	<u> </u>			<u> </u>	iaur	<u> </u>

Groundwater encountered during drilling at depth of 5 feet and measured on 12/6/19 at depth of 7.8 feet.

Slotted PVC pipe installed to depth of 21.5 feet to facilitate water level measurements.

Drilled By: Dirk

Logged By: Olivia R

Page: 1 of 1 Figure:

Key to Symbols

900 West 200 South, American Fork, Utah

11/12/19 Date:

Job #: 13729

										Blow	s(N)			Gra	datio	on	A	terb	erg		
Depth (ft)	GRAPHIC LOG		S	oil Descr	iption			Sample Type	Sample #		Total	Moisture (%)	Dry Density(pcf)	Gravel %	Sand %	Fines %	LL	PL	J.		
1	2			3	COLUM	N D	CCCDID.	4	⑤	6	7	8	9								
1				v the ground surfa	COLUM ace (including	<u>U N</u>	Gradation	: Pe	rcenta										d		
	•		•	r symbol below). ng type of soil en	countered	_	from lab te				•	Ū									
2	(see ②	below).				(11)	Atterberg:				•			_							
3				of soils encountenbol (see below).	ered, including		LL = Liqu plastic to li				ater	conte	nt at '	wnich	a soil	cnang	ges ti	rom			
4				mple collected at ols are explained			PL = Plas to plastic b			<u>(%):</u> \	Vater	conte	ent at	which	a soil	chan	ges 1	from lic	quid		
(5)		#: Con	secutive numb	pering of soil sam	-		PI = Plas	ticit	y Inde		_	_			ent at	which	a so	il exhi	bits		
6	Blows:	Numbe	r of blows to a	dvance sampler ii							50110				,						
7				mmer with 30" dr s to advance san			S Description	_	IFICAT nickne			<u> M</u>	ODIFII Trac	 -				oisture,			
	and 3rd			of soil sample me	acured in		Seam Lense	- 1	o to ½ o to 12				<5% Som	` I⊦	dusty, d						
8	laborato	ory (perc	centage of dry	weight of sample).		Layer	G	reater	than 12	2 in.		5-129	6 E	Moist: Damp / moist to the touch, but no visible water.						
9			<u>cf):</u> The dry de nds per cubic f	ensity of a soil me foot).	asured in	ured in Occasional 1 or less per foot With Frequent More than 1 per foot > 12%							. 113	Satura usually			water, roundw	vater.			
		MA.	JOR DIVISI	ONS	USCS SYMBOLS	2	TYF	PIC.	AL D	ESC	RIP	TION	NS								
(SS)			GRAVELS	CLEAN GRAVELS	GW		No Fines	ell-Graded Gravels Gravel-Sand Mixtures Little or								SYMBOLS					
(US			The coarse fraction	(< 5% fines)	GP		Poorly-Grad	ea G	ravels	Grave	el-San	MIXTU	ires, L	ittle		Blo	ck Sa	ample			
Σ	COAI GRAI		retained on No. 4 sieve.	GRAVELS WITH FINES	GM		Silty Gravels	, Gra	avel-Sa	and-Silf	Mixtu	res				Bul	k/Ba	g Samp	ole		
SYSTEM (USCS)	SO More th	ILS		(≥ 12% fines)	GC		Clayey Grav Well-Graded							_			dified mpler	l Califo	rnia		
	of mat	erial is	SANDS	CLEAN SANDS	SW		Fines Poorly-Grad							10		3.5	" OD	, 2.42" impler	ID		
NOIT	200 sie		The coarse fraction passing	(< 5% fines) SANDS WITH	SP		Fines				•	45, LIII					ck Co				
<u> </u> ĕ			through No. 4 sieve.	FINES	SM	川	Silty Sands,							_			ndar netra	d tion Sp	lit		
CLASSIFICAT				(≥ 12% fines)	SC		Clayey Sand	to ar	a very	Title	anus,			_		Sp		Sample			
ΙŠ			SILTS A	ND CLAYS	ML	\iiint	Silty or Claye Dissticity Inorganic Claye							ght		(Sh	elby	Tube)			
	GRA		Liquid Limit	less than 50%	CL OL		Gravelly Cla Organic Silts	ys, S	andy (Clays,	Silty C	ays, L	ean C	lays							
SOIL	More th				MH	惰	Plasticity Inorganic Sil			us or D	iatoma	acious	Fine	\dashv							
UNIFIED	of mat smaller t 200 sie	than No.		ND CLAYS	CH		Sand or Silty Soils WATER SYM								:						
N	200 316	. 5 5,26.	Liquid Limit g	reater than 50%	OH	Organic Silts and Organic Clays of Medium to High Plasticity Encounter Water Lev Measured						evel	or								
		HIGHL	Y ORGANIC	SOILS	PT	29.0	Plasticity Peat, Humus Contents	s, Sv	vamp S	Soils wi	th Hig	h Orga	nic	\dashv	(804	Lev	/el				
	<u></u>					ئىنىد	10011101110							_	(see Remarks on Logs)						

1. The results of laboratory tests on the samples collected are shown on the logs at the respective sample depths.

Note: Dual Symbols are used to indicate borderline soil classifications (i.e. GP-GM, SC-SM, etc.).

2. The subsurface conditions represented on the logs are for the locations specified. Caution should be exercised if interpolating between or extrapolating beyond the exploration locations.

3. The information presented on each log is subject to the limitations, conclusions, and recommendations presented in this report.

Company:	CMT En	gineer	ing			
Project Name: /	American	Fork Apa	artments			
Location:	900 W 20	OS, Ame	erican Fork, UT	Designer:	Jeff Egbert	Checked By:
Project #:	13729			Date:	12/10/2019	Date:
Units (1=SI, 2=US):	2		Grou	nd Slope, S:	0.1	% (Enter either S or W)
PGA:	0.555		Free-Fac	e Ratio, W:		% (Enter either S or W)
(Modal) M _w :	7.09		Hammer	Efficiency:	80	%
Distance:	7.6	km	San	npler Liner:	NL	NL = Room for liners, but no liners L = Standard Split Spoon
Vs,12:	623	ft/s	Borehol	e Diameter:	8	in

Percentile:

85

Boring No.	Top Samp. Depth (ft)	Depth to Water (ft)	Measured SPT N	γ (lb/ft^3)	Thickness (ft)	Fines (%)	D50 (mm)	$K_{(aging)}$	Soil Type	Susceptible?
B-1	7.5 .	4	5	113	4	25	0.215		SC	Yes
B-1	10	4	11	116	4	23	0.234		sc	Yes
B-3	7.5	2	5	113	2.5	25	0.215		sc	Yes
B-5	5	5	6	114	2.5	35	0.148		sc	Yes
B-5	7.5	5	7	114	4.5	35	0.148		sc	Yes
B-6	5	5	1	112	2.5	43	0.112		sc	Yes
B-6	7.5	5	5	113	. 2.5	43	0.112		SC	Yes
B-7	20	2	8	115	1.5	25	0.215		SC	Yes
B-8	7.5	5.5	3	112	2.5	25	0.215		sc	Yes
B-8	30	5.5	7	114	4.5	25	0.215		SC	Yes
B-10	5	1.5	3	112	2.5	43	0.112		sc	Yes

Rod Lengths:

ft

Boring No. B-1 B-1 B-3 B-3 B-5 B-5 B-5 B-6 B-6 B-6 B-7 B-8 B-8 B-10	Deterministic Liquefaction Triggering using Boulanger & Idriss (2008) "" 0.5550 g "" 7.19 Percentile 85	Boring No. B-1 B-1 B-3 B-5 B-5 B-6 B-6 B-6 B-7 B-8 B-10	Deterministic Liquefaction Triggering using Youd & Idriss et al (2001) a _{max} = 0.5550 g M _w = 7.09
Samp.Depht(f)) 8 8 5.5 5.5 5.5 5.5 5.5 5.5	Liquefaction Tri 0.5550 g 7.09 85	Samp.Depth(f) Depth (m) 8 2.438 10.5 3.200 5.5 1.478 5.5 1.478 8 2.438 8 2.438 8 2.438 8 2.438 8 2.438 8 1.55 1.676 5.5 1.676 5.5 1.676	Liquefaction Tri 0.5550 g 7.09
I 1	Triggering) Depth (m) 2,438 3,200 2,438 1,676 1,676 2,438 1,674 2,438 2,438 2,438 1,676 1,676	Triggering 0 g 9
Depth (m) Thick (m) 2.438 1.219 3.200 1.219 3.200 1.219 1.438 0.762 1.438 0.762 2.438 0.762 2.438 0.762 2.438 0.762 2.438 0.762 9.296 1.372 1.676 0.762	using Bou) Thick (m) 1.319 1.219 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762	using You
Water (m) 1.219 1.29 1.29 0.610 1.524 1.524 1.524 1.526 0.610 1.676 0.457	langer & I	Water (m) 1.219 1.239 1.239 1.234 1.524 1.524 1.524 1.526 1.576 1.	d & Idriss
y (k.Vm²) 17.75 18.25 17.75 17.91 17.60 17.75 17.60 17.60 17.60	driss (2008	y (kN/m²) 18.75 18.25 17.75 17.91 17.91 17.75 17.70 17.70 17.70 17.60	et at (2001
Fines (%) 25 25 25 25 25 25 25 25 25 25 25 25 25	9	a, (kPa) 43.29 57.75 43.86 43.86 30.10 43.74 43.74 44.08 111.52 44.99 166.04 32.01	J
(N ₁) _b (N ₁)		a; (kPa) 31.33 38.23 28.09 28.09 28.09 34.77 35.11 91.31 91.31 20.05	. •
(N-)Jose 16.54 30.20 19.39 17.07 7.89 17.07 11.56 11.26 11.26 11.26 11.26		Fines (%) 25 25 25 25 25 25 25 25 25 25 25 25 25	
a, (kPa) 43.29 57.73 43.86 30.10 43.74 43.74 44.08 111.52 44.99 166.04 32.01		(N ₁) ₆₀ 9,83 23,98 110,19 12,12 13,74 113,74 16,74 5,67 12,50 6,37	
a, (k/Pa) 31.33 38.33 38.32 25.99 25.99 25.97 35.11 91.31 91.31		4.289 4.029 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000	
-0.101 -0.101 -0.101 -0.001 -0.101 -0.000 -0.101 -0.618 -0.060		β 1.115 1.100 1.2	
\$ 0.0112 0.0117 0.0117 0.0112 0.0012 0.0012 0.0012 0.0041 0.012 0.0099 0.0097		(N)) _{0,0} 15.23 30,48 19.5.6 19.5.6 19.5.8 16.52 12.96 10.61 12.64	
1, 0.982 0.993 0.992 0.992 0.992 0.992 0.992 0.992 0.992 0.992 0.995 0.9		14 0.981 0.995 0.981 0.987 0.987 0.982 0.922 0.926 0.926 0.927	_
# H H H H H H H H H H H H H H H H H H H		MSF tolse 1.154 1.155 1.154 1.154 1.154 1.154 1.154 1.154 1.154 1.154	(for comparison only)
C ₂ 0.097 0.165 0.097 0.165 0.097 0.106 0.097 0.102 0.0097 0.102 0.0097 0.102 0.0097			
K ₆ 1.114 1.103 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.1081 1.1091 1.1091 1.1091		K ₈ 1.365 1.393 1.319 1.288 1.278 1.278 1.119 1.1220 1.1221 1.383	
Total Control		No.	
CSR(sin) 0.3943 0.4992 0.4793 0.2975 0.3562 0.3169 0.5576 0.3577 0.4521 0.4521		CSR(site) 0.3351 0.3452 0.3452 0.3950 0.2279 0.2156 0.3156 0.3156 0.3155 0.4947 0.2055 0.3553	
CRR 0.1981 0.4815 0.4981 0.31981 0.32643 0.12643 0.1265 0.12166 0.1589		CRR 0.6003 0.4003 0.2633 0.1177 0.1203 0.1477 0.1603	
178, p. 16, p. 178, p.		FS ₁₄ 1.352 1.149 0.0478 0.0478 0.0463 0.0463 0.0487 0.0474 0.0474 0.0474	'n

Company: CMT Engineering	Project: American Fork Apart	ments
Location: 900 W 200 S, American Fork, UT	Designer: Jeff Egbert	Checked by:
Project #: 13729	Date: 12/10/2019	Date:

Results of Deterministic Liquefaction Initiation and Settlement:

Boring	Top Samp	Youd and I	driss (2001) -	See Note 1	Idriss & Boula	anger(2008,201	2)-See Note 2	Cetin et al. (2004, 2009)	- See Note 3
No.	Depth(ft)	$(N_1)_{60,cs}$	FS Liq.	$\sum S$ (in)	$(N_1)_{60,cs}$	FS Liq.	$\sum S$ (in)	$(N_1)_{60,cs}$	FS Liq.	$\sum S$ (in)
B-1	7.5	15.3	0.6	0.9	16.5	0.5	1.2	12.9	0.4	1.6
B-1	10	30.4	1.7	0.0	30.2	1.4	0.0	31.2	1.3	0.0
B-3	7.5	15.7	0.5	0.6	16.5	0.4	0.7	12.9	0.4	1.0
B-5	5	19.5	0.9	0.9	19.4	0.8	1.7	16.4	0.7	2.0
B-5	7.5	21.5	0.9	0.6	21.5	0.7	1.0	19.0	0.7	1.2
B-6	5	7.4	0.5	1.4	7.9	0.4	1.9	4.5	0.3	2.5
B-6	7.5	16.5	0.6	0.5	17.1	0.6	0.7	14.0	0.5	0.9
B-7	20	23.0	0.6	0.2	22.6	0.5	0.3	21.2	0.4	0.5
B-8	7.5	10.6	0.5	1.7	12.0	0.4	2.2	8.4	0.3	3.1
B-8	30	18.2	0.4	0.9	17.7	0.4	1.0	14.9	0.3	1.4
B-10	5	12.6	0.5	0.7	12.5	0.4	0.9	9.2	0.3	1.2
#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A
#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A
#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A
#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A
#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A
#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A
#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A
#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A
#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A
#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A
#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A
#N/A	** #N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A
#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A
#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A
#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A
#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A
#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A
#N/A .	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A
#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A
#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A
#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A

NOTES

- 1. Youd & Idriss et al (2001); Tokimatsu & Seed (1987)
- 2. Idriss & Boulanger (2008, 2012); Ishihara & Yoshimine (1992)
- 3. Cetin et al. (2004, 2009)

Company: CMT Engineering	Project: American Fork Apar	tments
Location: 900 W 200 S, American Fork, UT	Designer: Jeff Egbert	Checked by:
Project #: 13729	Date: 12/10/2019	Date:

Summary of Deterministic Liquefaction Settlement and Lateral Spreading:

Boring	Determ	ninistic Sett	lement	T ₁₅ (m)	F ₁₅ (%)	D50 ₁₅	Lat.Spread. Dh
No.	Y&S(1987)	I&Y(1992)	Cetin(2009)	1 15 (111)	1 15 (70)	(mm)	(ft)
B-1	0.91	1.18	1.59	0.00	25.00	0.22	0.00
B-3	0.56	0.72	1.01	0.00	25.00	0.22	0.00
B-5	0.89	1.69	1.95	0.00	35.00	0.15	0.00
B-6	1.44	1.87	2.53	0.76	43.00	0.11	0.47
B-7	0.25	0.34	0.45	0.00	0.00	0.00	0.00
B-8	1.67	2.23	3.14	0.76	25.00	0.22	0.87
B-10	0.66	0.88	1.21	0.76	43.00	0.11	0.47

February 21, 2020

ENT 50432:2021 PG 57 of 73

Castlewood Development Attn: Russell Harris 6900 South 900 East, Suite 130 Salt Lake City, Utah 84047

Re:

Geotechnical Report Review Response

American Fork Apartments American Fork, Utah CMT Job No. 13729

Mr. Harris;

The purpose of this letter is to address review comments of the geotechnical report¹ CMT performed for the project site. The review was provided by Taylor Geotechnical (Project #20009, February 13, 2020). This letter will serve as an addendum to the referenced report.

Comment No. 2: "CMT completed a site specific liquefaction analysis based on borings that extended to a maximum depth of 31.5 feet. In accordance with Chapter 4, Procedure to Develop Real Property, section 4-2-2 Soils Investigation, sub-item 10, which states: "The report must be in accordance with the guidelines and recommendations of the "American Fork Sensitive Lands Geologic Hazards Study," Chapter 5 titled "Conclusion and Recommendations" prepared by RB&G Engineering, Inc. dated December 2006." In the RB&G document, it specifies the minimum depth of borings for liquefaction analysis is 40 feet. Therefore, TG recommends the City of American Fork request CMT to complete the subsurface investigation and accompanying liquefaction analysis in accordance with the American Fork City Sensitive Lands Ordinance.

Response: As part of a previous geotechnical investigation² CMT performed for the development immediately east of the project site (Meadows at American Fork) in 2016 a borehole was extended to a depth of 41.5 feet below the surface. A log of the bore hole (B-5) is attached. The hole was located in the approximate center of the adjacent site approximately 300 feet east of the east boundary of the subject site. As indicated on the B-5 log, a similar soil profile to the subsurface conditions encountered at the subject site was found, namely predominately clay layers, with interbedded layers of sand and gravel. The geotechnical report for adjacent property found similar liquefaction potential and estimated potential differential settlements.

Comment No. 3: "TG recommends the City of American Fork request CMT to provide calculations that substantiate their recommended allowable bearing capacity, estimated settlement, lateral resistance, and lateral loading recommendations. Variable used in their calculations should be substantiated."

Response: See attached data sheets. Soil strength parameters used in the calculations (friction angle of 30 degrees for native clay soils and of 34 degrees for structural fill) were based upon correlations with Bureau of Reclamation Design Standards No. 13 Embankment Dams, Table 5.

¹ Geotechnical Engineering Study, American Fork Apartments, About 900 West 200 South, American Fork, Utah, Project No. 13729, December 11, 2019

² Geotechnical Engineering Study, 18 Acre Townhome Development, 6600 West 7750 North, Utah County, Utah, Project No. 8477, April 27, 2016

Geotechnical Report Review Response American Fork Apartments, American Fork, Utah American Fork, Utah Project No. 13729

We appreciate the opportunity to be of service to you on this project. If we can be of further assistance or if you have any questions regarding this project, please do not hesitate to contact us at (801) 492-4132. To schedule materials testing please call (801) 381-5141.

Respectfully submitted,

CMT Engineering Laboratories

Jeffrey J. Egbert, P.E., LEED A.P., M. A

Senior Geotechnical Engineer

18 Ac. Townhome Development

Bore Hole Log

B-5

6600 W 7750 N, Utah County, Utah

Boring Type: Hollow Stem
Surface Elev. (approx):

Total Depth: 41.5 Feet Water Level: 6.5

Date: 4-12-2016 Job #: 8477

Blows (N) Atterberg Gradation Moisture (%) GRAPHIC LOG Depth (ft.) Dry Density Soil Description LL PL PI TOPSOIL: Approximately 6 inches Dark brown/gray CLAY (CL) w/ roots 19 86.0 moist 21 32 15 very moist and medium stiff 22 Dark brown Clayey GRAVEL (GC) w/ sand 23 9 wet and medium dense 12 21 12 wet and dense 24 20 15 35 Gray SAND (SP-SC) w/ gravel and clay 15 moist and loose Dark gray CLAY (CL) 18 38 25 13 very moist and soft 26 45.1

Remarks:

Ground water at 6.5'

Drilling By:

Great Basin

Logged By:

N. Pack

Figure:

18 Ac. Townhome Development

Bore Hole Log

6600 W 7750 N, Utah County, Utah

Boring Type: Hollow Stem Surface Elev. (approx):

Total Depth: 41.5 Feet Water Level: 6.5

Date: 4-12-2016 Job #: 8477

ff.)	2		ype		Blow	s (N)	(%)	Gra	adat	ion	Att	erbe	erg	Ξţ
Depth (ft.)	GRAPHIC LOG	Soil Description	Sample Type	Sample #	Blows/6"	Total Final 12"	Moisture (%)	Gravel %	Sand %	Fines %	LL	PL	ΡI	Dry Density
24 -		-										•		
-			7		3			ļ						
-		very moist and medium stiff	1	27	3	5								
27 –		· .						-						
-														
30 -		-	7		2									
-		moist and stiff	1	28	<u>4</u> 6	10	1							
-			Γ								-			
33 -		_												
] ,											
-			7		3									
36 -		moist and very stiff	1	29	6 12	18								
-			-											ļ
-														
39 -		Gray SAND (SP) w/ round gravel												
39-														
-			7		7									
		wet and dense	1	30	13 19	32		-						
42 -		End at 41.5 Feet				-			-					
]		_					-						
		·												
		aund under at 6 El												
Remarl	ks: <u>G</u> i	ound water at 6.5'										F	igur	e:]

Drilling By: Logged By: **Great Basin**

N. Pack

Project #:

Project Name:

Address:

137<u>29</u> AF Apartments 900 W 200 S, American Fork, UT

Footing Depth, D (ft) Depth to Water (ft) Bearing Capacity, P (psf)

s.dr.	2	.5	(ke)
	. 2	.5	
	20	00	

Spc Stri

I took tale to be a

ot Load (k)	150
ip Load (klf)	10

Bottom of

Footing Width, B Footing Length, L

Strip	Spread
5	8.7
25	8.7

Soil Parameters

Type Structural Fill CL1 CL2 CL3

				Offic Weight, Y	Layer
Cc	Cs	рс	e°	(pcf)	(from BOF)
					4
0.135	0.017	3000	0.4152	116.9	. 7. 5
0.094	0.01	5300.	0:3496	., 122.6	15
0.191	0.037	7700	0139552	118.6	25

Total Settlement Strip Footing

0.85"

Total Settlement Spread Footing

0.81"

Settelement (S) Calculations

								Strip Footii	ng		Spread Foo	ting	
z=BBOF	Pc	Cs	Cc	e°		(Cs*H)/(1+e°)	(Cc*H)/(1+e	ро+∆р	S (ft)	S (in)	ро+∆р	S (ft)	S (in)
1	2000		0	0	0.720	0.00872093	0.0697674	2476.62	0.009762	0.117145	2840	0.01391	0.166925
2	2000		0	0	0.720	0.00872093	0.0697674	2059.63	0.00367	0.044041	2960	0.014659	0.175903
3	2000		0	0	0.720	0.00872093	0.0697674	1871.637	0.002083	0.02499	2436.346	0.008313	0.099762
4	2000		0	0	0.720	0.00872093	0.0697674	1811.502	0.00156	0.018718	2156.433	0.004217	0.050598
5	2000		0	0	0.720	0.00872093	0.0697674	1816.186	0.001209	0.014503	2013.591	0.001779	0.021347
6	2000		0	0	0.720	0.00872093	0.0697674	1856.745	0.000963	0.011552	1959.236	0.001166	0.013994
7	2000		0	0	0.720	0.00872093	0.0697674	1918.922	0.000784	0.009412	1960.327	0.000865	0.010382
8	2000		0	0	0.720	0.00872093	0.0697674	1995.04	0.000651	0.007811	1996.662	0.000654	0.007848
9	2000		n	n	0.720	0.00872093	0.0697674	2080.639	0.001597	0.019161	2056.024	0.001236	0.014834

Overburden Pressure Calculations

			Effective Unit Weight (γ')	Existing Effective Stress (psf)
z= (Below BOF)	Soil Unit Weight (ɣ)	Below Water Table?	= γ - γ _w (if below WT)	= y ' * z
1	116.9	у	54.5	190.75
2	116.9	у	54.5	245.25
3	122.6	У	60.2	305.45
4	122.6	у	60.2	365.65
5	122.6	У	60.2	425.85
6	122.6	У	60.2	486.05
· 7	122.6	У	60.2	546.25
8	122.6	У	60.2	606.45
9	122.6	У	60.2	666.65
10	122.6	У	60.2	726.85
11	122.6	У	60.2	787.05
12	122.6	У	60.2	847.25
13	122.6	У	60.2	907.45
14	122.6	У	60.2	967.65
15	122.6	У	60.2	1027.85
16	118.6	У	56.2	1084.05
17	118.6	У	56.2	1140.25
18	118.6	У	56.2	1196.45
19	118.6	У	56.2	1252.65
20	118.6	У	56.2	1308.85
21	118.6	У	56.2	1365.05
22	118.6	У	56.2	1421.25
23	118.6	У	56.2	1477.45
24	118.6	У	56.2	1533.65
25	118.6	У	56.2	1589.85
26		У	#VALUE!	#VALUE!
27		У	#VALUE!	#VALUE!
28		У	#VALUE!	#VALUE!
29		У	#VALUE!	#VALUE!
30		У	#VALUE!	#VALUE!
31		У	#VALUE!	#VALUE!
32		У	#VALUE!	#VALUE!
33		У	#VALUE!	#VALUE!
34		У	#VALUE!	#VALUE!
35		У	#VALUE!	#VALUE!
36		У	#VALUE!	#VALUE!
37	(у .	#VALUE!	#VALUE!
38		У	#VALUE!	#VALUE!
39		У	#VALUE!	#VALUE!
40		У	#VALUE!	#VALUE!

71	61	50		25	50		127	دو	0.0998	584 0.099917	0.0499584	50
73	63	49		26 .	49		130	<u>ш</u>	0.1018	521 0.101952	0.05097621	49
75	65	48		27	48		132	1	0.1039	0.104073	0.05203631	48
6	6/	47		27	4/		135	_	0.1061	0.106283	0.05314141	4/
1 6		ì đ		27	i t		105	۰ ـ	0.1004	0.106363	0.0111	1 4
78	י סת	<u> </u>		ر ا هر	<u></u>		138	- -1	0 1084	0 108589	0.05429441	46
80	71	45		28	45		141	⊢ •	0.1108		0.05549851	45
82	74	44		29	44		144	_	0.1133		0.05675716	4
85	77	43		30	43		148	┙	0.1159		0.05807416	43
87	79	42		30	42		151	<u>~</u>	0.1186	366 0.118907	0.05945366	42
89	82	41		31	41		155	₽	0.1215	0.1218	0.06090021	41
92	85	40		32	40		159	ь.	0.1245	381 0.124838	0.06241881	40
95	89	39		33	39		163	ш	0.1277	198 0.12803	0.06401498	39
98	92	38		34	38		167	ш	0.131	948 0.13139	0.0656948	38
101	96	37		34	37		172	<u>د ـــر</u>	0.1345	502 0.13493	0.06746502	37
104	100	36		35	36		176	щ	0.1382	_	0.06933313	36
107	104	35		36	ŭ,		181		0.1421		0.0/130/46	
	109	34		3/	34		18/	٠,-	0.1463		0.0/339/33	. u
1 L	113	· ·		33			107	, ⊢	0.1007		0.07.00.0	, ,
11,	113	2 C		20 6	, c		197	4 د	0.1507		0.07561	# H
119	119	3 ¦		40	# 1		198		0 1553		0 07796663	3)
123	124	<u></u>		41	<u>з</u>		204	<u> </u>	0.1602	0.160942	0.08047101	31
128	130	30		42	30		211	ц	0.1655	0.166282	0.08314123	30
133	136	29		44	29		218	1	0.1711	0.171989	0.08599429	29
138	143	28		45	28		226	1	0.1772	958 0.178099	0.08904958	28
144	150	27		47	27		234	<u></u>	0.1836	933 0.184659	0.09232933	27
150	158	26		49	26		243	-	0.1905	0.171/18	0.09585915	26
15/	16/	1 0		12			243	۰, ۱	0.136	0.199337	0.09900000	۲ ۵
157	167	÷ ;		n (1 1		752	4 د	0.100		0.00066	. i
164	176	24		53	24		263	، د	0.2061		0.10379234	24
172	186	23		55	23		275	1	0.2149		0.10827059	23
181	197	22		58	22		287	Ь	0.2244	0.226302	0.11315098	22
190	209	21		61	21		300	1	0.2348	0.23698	0.11848996	21
200	222	20		64	20		315	1	0.2462	199 0.24871	0.12435499	20
212	237	19		67	19	- 	331	μ.	0.2587	274 0.261655	0.1308274	19
224	253	18		71	18	* ^	349	μ.	0.2725	0.276012	0.13800602	18
238		17	1	75	17	7 / 0	369	بىر	0.2879	0.292025	0.14601226	17
254	290 _s	16.	-	80	16	・ノンサゲン	392	. р	0.3051	0.309993	0.154996/4	16
2/1	313	; b	→ 1	ö	. t	1 7	41/		0.3243	0.330297	0.151265	; ;
777	313	i ‡		0 Y	i ‡		417	.a p	0.3401	0.333416	0.1/0/0860	15 14
701	337	3 6	_	2 6	<u></u>		ДД (ر د	03/61	0.353/18	0 176708	1/2
314	365	<u>ئ</u> ل	- \	g 5	ن ئ		478	→ 1	0.3709		0.18998829	13
2/0	307	17	<u> </u>	106	1 1		516	۱ د	1 5005 0		0.539539	12
370	434	<u> </u>	<u></u>	116	1		560	_ .	0.4322	0.446953	0.2234766	
405	476	10	-	127	10		612		0.4706	0.489957	0.24497866	10
447	525	9	<u> </u>	141	9	•	673	Ľ	0.5158	0	0.27094685	9
497	583	00		159	∞		748	1	0.5694	0.60577	0.30288487	∞
558	. 651	7	<u> </u>	182	7		840	1	0.6335	0.686048	0.34302394	7
633	733	6		212	on.	P	955	↦	0.7101	112 0.789582	0.39479112	6
729	833	ر. د	0	255	ۍ.		1100	↦	0.8	761 0.927295	0.46364761	5
853	958	4		318	4		1283	,,	0.8989	932 1.117199	0.55859932	4
1017	1116	ω	_	424	ω		1511	┙	0.9836	1.389477	0.69473828	ω
1240		2		637	2	$\frac{dp}{\pi} = \frac{\pi}{\pi} \left[a + \left(\sin \alpha \right) + \cos \left(a + 2 \left(- 0 \right) \right) \right]$	1762	μ.	0.9756	1.792111	0.89605538	2
1610	$\Delta p = F$	ם	$\Delta p = \frac{1}{\pi(7^2)^2}$	1273		A = P	1955	ட	7	5 2.38058	1.19028995	-
	Δp = R + 7	Z=	$2Pz^2$	Δp =	z=		11	$cos(\alpha+2(-\delta))$ $\Delta p=$	sin(a) cos(a	2δ=α	δ (radians)	Depth, z
Average	2:1 Method Stress increase	2:1 Metho	10	Stress Below a Line Load	Stress Belo		Bulloon	nter of a Stri	ase below ce	Boussinesq's Solution for stress increase Below Center of a Strip Footing	esq's solution	BOUSSING
				:	-				ons	Surp Footing Stress Increase Calculations	oung stress i	orip For
									5	norone Coloulati	ting Chance I	ot is

Spread Footing Stress Increase Calculations Boussinesq's Solution Rectangular Footing

	54.98911	0.027494556	0.012177602	0.024354603	0.987895947	81.12	9.006664	4.330127	39
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	57.863	0.028931585	0.012818673	0.025636643	0.98726279	77.01333	8.775724	4.330127	38
$\frac{2}{\pi} = 0.638619772$ $\frac{2}{\pi} = 0.638619772$ $\frac{2}{\pi} = 0.638619772$ $\frac{2}{\pi} = 0.638619772$ $\frac{2}{\pi} = 0.638619772$ $\frac{2}{\pi} = \frac{m_1 + m_1^2}{\sqrt{1 + m_1^2 + m_2^2}} = \frac{1 + m_1^2 + 2 + 2 + \frac{\pi}{4}}{\sqrt{1 + m_1^2 + m_2^2}} = \frac{1 + m_1^2 + 2 + \frac{\pi}{4}}{\sqrt{1 + m_1^2 + m_2^2}} = \frac{1 + m_1^2 + 2 + \frac{\pi}{4}}{\sqrt{1 + m_1^2 + m_2^2}} = \frac{1 + m_1^2 + 2 + \frac{\pi}{4}}{\sqrt{1 + m_1^2 + m_2^2}} = \frac{m_1}{(1 + m_1^2) + (m_1^2 + m_1^2)} = \frac{m_1}{(1 + m_1^2 + m_1^2 + m_1^2)} = \frac{m_1}{(1 + m_1^2 + m_1^2 + m_1^2 + m_1^2)} = \frac{m_1}{(1 + m_1^2 + m_1^2 + m_1^2 + m_1^2 + m_1^2 + m_1^2)} = \frac{m_1}{(1 + m_1^2$	60.96	0.030483451	0.01351149	0.027022158	0.986578975	73.01333	8.544784	4.330127	37
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	64.3252	0.032162622	0.01426175	0.028522533	0.98583899	69.12	8.313844	4.330127	36
	67.9665	0.033983297	0.015075948	0.030150754	0.985036563	65.33333	8.082904	4.330127	35
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	71.923	0.035961688	0.01596152	0.031921685	0.984164522	61.65333	7.851964	4.330127	34
$ \Delta p = p \cdot \frac{2}{\pi} = 0.6366139772 $ $ \Delta p = p \cdot \frac{2}{\pi} \left[\frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} \cdot \frac{1 + m_1^2 + 2n_1^2}{\sqrt{1 + m_1^2 + n_1^2}} \right] + \sin^{-1} \left(\frac{m_1}{m_1^2 + n_1^2} \cdot \frac{n_1}{\sqrt{1 + m_1^2 + n_1^2}} \right] + \sin^{-1} \left(\frac{m_1}{m_1^2 + n_1^2} \cdot \frac{n_1}{\sqrt{1 + m_1^2 + n_1^2}} \right) $ $ \Delta p = p \cdot \frac{2}{\pi} \left[\frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} \cdot \frac{1 + m_1^2 + 2n_1^2}{\sqrt{1 + m_1^2 + n_1^2}} \right] + \sin^{-1} \left(\frac{m_1}{m_1^2 + n_1^2} \cdot \frac{n_1}{\sqrt{1 + m_1^2 + n_1^2}} \right) $ $ \Delta p = p \cdot \frac{2}{\pi} \left[\frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} \cdot \frac{1 + m_1^2 + 2n_1^2}{\sqrt{1 + m_1^2 + n_1^2}} \right] + \sin^{-1} \left(\frac{m_1}{m_1^2 + n_1^2} \cdot \frac{n_1}{\sqrt{1 + m_1^2 + n_1^2}} \right) $ $ \Delta p = p \cdot \frac{2}{\pi} \left[\frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} \cdot \frac{1 + m_1^2 + 2n_1^2}{\sqrt{1 + m_1^2}} \right] + \sin^{-1} \left(\frac{m_1}{m_1^2 + n_1^2} \cdot \frac{n_1}{\sqrt{1 + m_1^2 + n_1^2}} \right) $ $ \Delta p = p \cdot \frac{2}{\pi} \left[\frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} \cdot \frac{1 + m_1^2 + 2n_1^2}{\sqrt{1 + m_1^2}} \right] + \sin^{-1} \left(\frac{m_1}{m_1^2 + n_1^2} \cdot \frac{n_1}{\sqrt{1 + m_1^2 + n_1^2}} \right) $ $ \Delta p = p \cdot \frac{2}{\pi} \left[\frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} \cdot \frac{1 + m_1^2 + 2n_1^2}{\sqrt{1 + m_1^2}} \right] + \sin^{-1} \left(\frac{m_1}{m_1^2 + n_1^2} \cdot \frac{n_1}{\sqrt{1 + m_1^2 + n_1^2}} \right) $ $ \Delta p \cdot \frac{m_1}{\sqrt{1 + m_1^2 + n_1^2}} \left[\frac{m_1}{\sqrt{1 + m_1^2 + n_1^2}} \cdot \frac{m_1}{\sqrt{1 + m_1^2 + n_1^2}} \right] + \sin^{-1} \left(\frac{m_1}{m_1^2 + n_1^2} \cdot \frac{n_1}{\sqrt{1 + m_1^2}} \right) $ $ \Delta p \cdot \frac{m_1}{\sqrt{1 + m_1^2 + n_1^2}} \left[\frac{m_1}{\sqrt{1 + m_1^2 + n_1^2}} \right] + \sin^{-1} \left(\frac{m_1}{m_1^2 + n_1^2} \cdot \frac{n_1}{\sqrt{1 + m_1^2}} \right) $ $ \Delta p \cdot \frac{m_1}{\sqrt{1 + m_1^2 + n_1^2}} \left[\frac{m_1}{\sqrt{1 + m_1^2 + n_1^2}} \right] + \sin^{-1} \left(\frac{m_1}{m_1^2 + n_1^2} \cdot \frac{n_1}{\sqrt{1 + m_1^2}} \right) $ $ \Delta p \cdot \frac{m_1}{\sqrt{1 + m_1^2 + n_1^2}} \left[\frac{m_1}{\sqrt{1 + m_1^2 + n_1^2}} \right] + \sin^{-1} \left(\frac{m_1}{m_1^2 + n_1^2} \cdot \frac{n_1}{\sqrt{1 + m_1^2}} \right) $ $ \Delta p \cdot \frac{m_1}{\sqrt{1 + m_1^2 + m_1^2}} \left[\frac{m_1}{\sqrt{1 + m_1^2 + m_1^2}} \right] + \sin^{-1} \left(\frac{m_1}{m_1^2 + m_1^2 + n_1^2 \cdot \sqrt{1 + m_1^2}} \right) $ $ \Delta p \cdot \frac{m_1}{\sqrt{1 + m_1^2 + m_1^2}} \left[\frac{m_1}{\sqrt{1 + m_1^2 + m_1^2 + n_1^2}} \right] + \sin^{-1} \left(\frac{m_1}{m_1^2 + m_1^2 + n_1^2 + n_1^2 \cdot \sqrt{1 + m_1^2}} \right) $ $ \Delta p \cdot \frac{m_1}{1 + m_1^2 + m_1^2 + n_1^2 + n_1^2 $	76.232	0.038116377	0.01692701	0.033852404	0.983214652	58.08	7.621024	4.330127	33
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	80.937	0.040468733	0.017982269	0.035962599	0.982177496	54.61333	7.390083	4.330127	32
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	86.086	0.04304343	0.019138703	0.03827507	0.981042132	51.25333	7.159143	4.330127	31
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	91.738	0.045869068	0.02040958	0.040816327	0.979795897	48	6.928203	4.330127	30
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	97.957	. 0.048978936	0.021810394	0.043617331	0.97842404	44.85333	6.697263	4.330127	29
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	104.82	0.052411955	0.023359334	0.046714419	0.976909308	41.81333	6.466323	4.330127	28
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	112.42	0.056213842	0.025077854	0.050150451	0.975231419	38.88	6.235383	4.330127	27
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	120.87	0.060438558	0.026991402	0.05397625	0.973366419	36.05333	6.004443	4.330127	26
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	130.30	0.065150127	0.029130333	0.058252427	0.971285862	33.33333	5.773503	4.330127	25
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	140.84	0.070424922	0.031531076	0.063051702	0.968955781	30.72	5.542563	4.330127	24
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	152.70	0.07635458	0.034237633	0.06846189	0.966335377	28.21333	5.311622	4.330127	23
$\frac{2}{\pi^2} = 0.636619772$ $\frac{2}{\pi^2} = 0.63661972$ $\frac{2}{\pi^2} = 0.63661972$ $\frac{2}{\pi^2} = 0.63661972$ $\frac{2}{\pi^2} = 0.63661$	166.09	0.083049709	0.037303529	0.074589756	0.963375338	25.81333	5.080682	4.330127	22
$\frac{2}{\pi^2} = 0.636619772$ $\frac{2}{\pi^2} = 0.636619772$ $\frac{2}{\pi^2} = 0.636619772$ $\frac{2}{\pi^2} = 0.636619772$ $\frac{2}{\pi^2} = 0.636619772$ $\frac{2}{\pi^2} = 0.636619772$ $\frac{2}{\pi^2} = 0.636619772$ $\frac{2}{\pi^2} = 0.636619772$ $\frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + n_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)} + \sin^{-1} \left(\frac{m_1}{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}\right) * \left(\frac{m_1}{m_1^2 + n_1^2} * \frac{n_1}{(1 + n_1^2) * (m_1^2 + n_1^2)} * \frac{m_1}{(1 + n_1^2) * (m_1^2 $	181.28	0.090644671	0.040794348	. 0.081566069	0.960015674	23.52	4.849742	4.330127	21
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	198.60	0.099303775	0.044791095	0.089552239	0.956182887	21.33333	4.618802	4.330127	20
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	218.45	0.109229362	0.049394672	0.098749177	0.951786275	19.25333	4.387862	4.330127	19
$\frac{2}{\pi} = 0.636619772$ $\frac{2}{\pi} = 0.636619772$ $\frac{2}{\pi} = 0.636619772$ $\frac{2}{\pi} = 0.636619772$ $\frac{2}{\pi} = 0.636619772$ $\frac{2}{\pi} = \frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} + \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)} + \sin^{-1} \left(\frac{m_1}{m_1^2 + n_1^2} * \sqrt{1 + n_1^2} \right) + \sin^{-1} \left(\frac{m_1}{m_1^2 + n_1^2} * \sqrt{1 + n_1^2} \right) + \sin^{-1} \left(\frac{m_1}{m_1^2 + n_1^2} * \sqrt{1 + n_1^2} \right) + \sin^{-1} \left(\frac{m_1}{m_1^2 + n_1^2} * \sqrt{1 + n_1^2} \right) + \sin^{-1} \left(\frac{m_1}{m_1^2 + n_1^2} * \sqrt{1 + n_1^2} \right) + \sin^{-1} \left(\frac{m_1}{m_1^2 + n_1^2} * \sqrt{1 + n_1^2} \right) + \sin^{-1} \left(\frac{m_1}{m_1^2 + n_1^2} * \sqrt{1 + n_1^2} \right) + \sin^{-1} \left(\frac{m_1}{m_1^2 + n_1^2} * \sqrt{1 + n_1^2} \right) + \sin^{-1} \left(\frac{m_1}{m_1^2 + n_1^2} * \sqrt{1 + n_1^2} \right) + \sin^{-1} \left(\frac{m_1}{m_1^2 + n_1^2} * \sqrt{1 + n_1^2} \right) + \sin^{-1} \left(\frac{m_1}{m_1^2 + n_1^2} * \sqrt{1 + n_1^2} \right) + \sin^{-1} \left(\frac{m_1}{m_1^2 + n_1^2} * \sqrt{1 + n_1^2} \right) + \sin^{-1} \left(\frac{m_1}{m_1^2 + n_1^2} * \sqrt{1 + n_1^2} \right) + \sin^{-1} \left(\frac{m_1}{m_1^2 + n_1^2} * \sqrt{1 + n_1^2} \right) + \sin^{-1} \left(\frac{m_1}{m_1^2 + n_1^2} * \sqrt{1 + n_1^2} \right) + \sin^{-1} \left(\frac{m_1}{m_1^2 + n_1^2} * \sqrt{1 + n_1^2} \right) + \sin^{-1} \left(\frac{m_1}{m_1^2 + n_1^2} * \sqrt{1 + n_1^2} \right) + \sin^{-1} \left(\frac{m_1}{m_1^2 + n_1^2} * \sqrt{1 + n_1^2} \right) + \sin^{-1} \left(\frac{m_1}{m_1^2 + n_1^2} * \sqrt{1 + n_1^2} \right) + \sin^{-1} \left(\frac{m_1}{m_1^2 + n_1^2} * \sqrt{1 + n_1^2} \right) + \sin^{-1} \left(\frac{m_1}{m_1^2 + n_1^2} * \sqrt{1 + n_1^2} \right) + \sin^{-1} \left(\frac{m_1}{m_1^2 + n_1^2} * \sqrt{1 + n_1^2} \right) + \sin^{-1} \left(\frac{m_1}{m_1^2 + n_1^2} * \sqrt{1 + n_1^2} \right) + \sin^{-1} \left(\frac{m_1}{m_1^2 + n_1^2} * \sqrt{1 + n_1^2} \right) + \sin^{-1} \left(\frac{m_1}{m_1^2 + n_1^2} * \sqrt{1 + n_1^2} \right) + \sin^{-1} \left(\frac{m_1}{m_1^2 + n_1^2} * \sqrt{1 + n_1^2} \right) + \sin^{-1} \left(\frac{m_1}{m_1^2 + n_1^2} * \sqrt{1 + n_1^2} \right) + \sin^{-1} \left(\frac{m_1}{m_1^2 + n_1^2} * \sqrt{1 + n_1^2} \right) + \sin^{-1} \left(\frac{m_1}{m_1^2 + n_1^2} * \sqrt{1 + n_1^2} \right) + \sin^{-1} \left(\frac{m_1}{m_1^2 + n_1^2} * \sqrt{1 + n_1^2} \right) + \sin^{-1} \left(\frac{m_1}{m_1^2 + n_1^2} * \sqrt{1 + n_1^2} \right) + \sin^{-1} \left(\frac{m_1}{m_1^2 + n_1^2} * \sqrt{1 + n_1^2} \right) + \sin^{-1} \left(\frac{m_1}{m_1^2 + n_1^2} * \sqrt{1 + n_1^2} \right) + \sin^{-1} \left(\frac{m_1}{m_1^2 + n_1^2} * \sqrt{1 + n_1^2} \right) + \sin^{-1} \left(\frac{m_1}{m_1^2 + n_1^2} * \sqrt{1 + n_1^2} \right) + \sin^$	241.34	0.120672424	0.054731917	0.10940919	0.946713029	17.28	4.156922	4.330127	18
$\frac{2}{\pi} = 0.636619772$ $\frac{2}{\pi} = 0.636619772$ $\frac{2}{\pi} = 0.636619772$ $\frac{2}{\pi} = 0.636619772$ $\frac{2}{\pi} = 0.636619772$ $\frac{2}{\pi} = 0.636619772$ $\frac{2}{\pi} = 0.636619772$ $\frac{2}{\pi} = 0.636619772$ $\frac{2}{\pi} = 0.636619772$ $\frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)} + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) + \sin^{-1} \left(\frac{m_1}{m_1^2 + n_1^$	267.89	0.133946655	0.060963832	0.121852153	0.940821706	15.41333	3.925982	4.330127	17
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	298.89	0.149447145	0.068296941	0.136487716	0.933933449	13.65333	3.695042	4.330127	16
$\frac{2}{\pi} = 0.636619772$ $\frac{2}{\pi} = 0.636619772$ $\frac{2}{\pi} = \frac{m_1 * n_1}{n_1^2 * n_1^2} + \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)} + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1}\left(\frac{m_1}{m_1^2 + n_1^$	335.35	0.167675353	0.076999141	0.153846154	0.9258201	12	3.464102	4.330127	15
$\frac{2}{\pi} = 0.6356619772$ $\frac{2}{\pi} = 0.6356619772$ $\frac{2}{\pi} = 0.6356619772$ $\frac{2}{\pi} = 0.6356619772$ $\frac{2}{\pi} = \frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{\sqrt{1 + m_1^2 + n_1^2}} + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2}} * \sqrt{1 + n_1^2}\right) + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2}} * \sqrt{1 + n_1^2}\right) + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2}} * \sqrt{1 + n_1^2}\right)$ $\frac{2}{\pi} = \frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)} + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2}} * \sqrt{1 + n_1^2}\right) + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2}} * \sqrt{1 + n_1^2}\right)$ $\frac{1}{\pi} = \frac{1 + m_1^2 + 2n_1^2}{\sqrt{1 + m_1^2 + n_1^2}} + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2}} * \sqrt{1 + n_1^2}\right)$ $\frac{1}{\pi} = \frac{1 + m_1^2 + 2n_1^2}{\sqrt{1 + m_1^2 + n_1^2}} + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2}} * \sqrt{1 + n_1^2}\right)$ $\frac{1}{\pi} = \frac{1 + m_1^2 + 2n_1^2}{\sqrt{1 + m_1^2 + n_1^2}} + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2}} * \sqrt{1 + n_1^2}\right)$ $\frac{1}{\pi} = \frac{1 + m_1^2 + 2n_1^2}{\sqrt{1 + m_1^2 + n_1^2}} + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2}} * \sqrt{1 + n_1^2}\right)$ $\frac{1}{\pi} = \frac{1 + m_1^2 + 2n_1^2}{\sqrt{1 + m_1^2 + n_1^2}} + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2}} * \sqrt{1 + n_1^2}\right)$ $\frac{1}{\pi} = \frac{1 + m_1^2 + 2n_1^2}{\sqrt{1 + m_1^2 + n_1^2}} + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2}} * \sqrt{1 + n_1^2}\right)$ $\frac{1}{\pi} = \frac{1 + m_1^2 + 2n_1^2}{\sqrt{1 + m_1^2 + n_1^2}} + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2}} * \sqrt{1 + n_1^2}\right)$ $\frac{1}{\pi} = \frac{1 + m_1^2 + 2n_1^2}{\sqrt{1 + m_1^2 + n_1^2}} + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2}} * \sqrt{1 + n_1^2}\right)$ $\frac{1}{\pi} = \frac{1 + m_1^2 + 2n_1^2}{\sqrt{1 + n_1^2}} + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2}} * \sqrt{1 + n_1^2}\right)$ $\frac{1}{\pi} = \frac{1 + m_1^2 + 2n_1^2}{\sqrt{1 + m_1^2 + n_1^2}} + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2}} * \sqrt{1 + n_1^2}\right)$ $\frac{1}{\pi} = \frac{1 + m_1^2 + 2n_1^2}{\sqrt{1 + m_1^2 + n_1^2}} + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2}} * \sqrt{1 + n_1^2}\right)$ $\frac{1}{\pi} = \frac{1 + m_1^2 + 2n_1^2}{\sqrt{1 + m_1^2 + n_1^2}} + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2}} * \sqrt{1 + n_1^2}\right)$ $\frac{1}{\pi} = \frac{1 + m_1^2 + 2n_1^2}{\sqrt{1 + n_1^2}} + \frac{1 + m_1^2 + 2n_1^2}{\sqrt{1 + n_1^2}} + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2}} * \sqrt{1 + n_1^2}\right)$ $\frac{1}{\pi} = \frac{1 + m_1^2 + 2n_1^2}{\sqrt{1 + n_1^2}} + \sin^{-1}\left(\frac{m_1}{$	378.54	0.189272557	0.08742214	0.174621653	0.916187987	10.45333	3.233162	4.330127	14
$\frac{2}{\pi} = 0.636619772$ $\frac{2}{\pi} = 0.636619772$ $\frac{2}{\pi} = 0.636619772$ $\frac{2}{\pi} = 0.636619772$ $\frac{2}{\pi} = 0.636619772$ $\frac{2}{\pi} = \frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{\sqrt{1 + n_1^2}} * \frac{m_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{m_1}{1$	430.12	0.215064562	0.100033595	0.199733688	0.904655701	9.013333	3.002221	4.330127	13
$\frac{2}{\pi} = 0.636619772$ $\frac{2}{\pi} = 0.636619772$ $\frac{2}{\pi} = 0.636619772$ $\frac{2}{\pi} = 0.636619772$ $\frac{2}{\pi} = 0.636619772$ $\frac{2}{\pi} = 0.636619772$ $\frac{2}{\pi} = 0.636619772$ $\frac{2}{\pi} = 0.636619772$ $\frac{2}{\pi} = 0.636619772$ $\frac{m_1 * n_1}{\pi} * \frac{n_1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)} + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-$	492.24	0.246120954	0.11546376	0.230414747	0.890723543	7.68	2.771281	4.330127	12
$\frac{2}{\pi} = 0.636619772$ $\frac{2}{\pi} = 0.636619772$ $\frac{2}{\pi} = 0.636619772$ $\frac{2}{\pi} = 0.636619772$ $\frac{2}{\pi} = 0.636619772$ $\frac{2}{\pi} = \frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)} + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) + \sin^{-1} $	567.6	0.283831985	0.134573982	0.268336315	0.873731618	6.453333	2.540341	4.330127	11
$\frac{2}{\pi} = 0.636619772$ $\frac{1}{\pi} = \frac{2}{\pi} = 0.636619772$ $\frac{1}{\pi} = \frac{2}{\pi} = \frac{1 + m_1^2 + 2n_1^2}{\pi} + \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)} + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right)$ $\frac{1}{\pi} = \frac{2}{\pi} = \frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)} + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right)$ $\frac{1}{\pi} = \frac{2}{\pi} = \frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)} + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right)$ $\frac{1}{\pi} = \frac{1 + m_1^2 + 2n_1^2}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)} + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right)$ $\frac{1}{\pi} = \frac{1 + m_1^2 + 2n_1^2}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)} + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right)$ $\frac{1}{\pi} = \frac{1 + m_1^2 + 2n_1^2}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)} + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right)$ $\frac{1}{\pi} = \frac{1 + m_1^2 + 2n_1^2}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)} + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right)$ $\frac{1}{\pi} = \frac{1 + m_1^2 + 2n_1^2}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)} * \frac{1}{\pi} = \frac{1 + m_1^2 + 2n_1^2}{\sqrt{1 + n_1^2}} * \frac{1}{\pi} = \frac{1 + m_1^2 + 2n_1^2}{\sqrt{1 + n_1^2}} * \frac{1}{\pi} = \frac{1 + m_1^2 + 2n_1^2}{\sqrt{1 + n_1^2}} * \frac{1}{\pi} = \frac{1 + m_1^2 + 2n_1^2}{\sqrt{1 + n_1^2}} * \frac{1}{\pi} = \frac{1 + m_1^2 + 2n_1^2}{\sqrt{1 + n_1^2}} * \frac{1}{\pi} = \frac{1 + m_1^2 + 2n_1^2}{\sqrt{1 + n_1^2}} * \frac{1}{\pi} = \frac{1 + m_1^2 + 2n_1^2}{\sqrt{1 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{\sqrt{1 + n_1^2}} * \frac{1}{\pi} = \frac{1 + m_1^2 + 2n_1^2}{\sqrt{1 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{\sqrt{1 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{\sqrt{1 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{\sqrt{1 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{\sqrt{1 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{\sqrt{1 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{\sqrt{1 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{\sqrt{1 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{\sqrt{1 + n_1^2}} * 1 + m_1^2 + 2$	660.00	0.330003912	0.158558281	0.315789474	0.852802865	5.333333	2.309401	4.330127	10
$\frac{2}{\pi} = 0.636619772$ $\frac{2}{\pi} = 0.636619772$ $\frac{2}{\pi} = 0.636619772$ $\frac{2}{\pi} = \frac{m_1 * n_1}{\pi} \frac{1 + m_1^2 + 2n_1^2}{(1 + m_1^2 + n_1^2)} + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2}} * \sqrt{1 + n_1^2}\right)$ $\frac{2}{\sqrt{1 + m_1^2 + n_1^2}} \frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)} + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2}} * \sqrt{1 + n_1^2}\right)$ $\frac{2}{\pi} \left[\frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)} + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2}} * \sqrt{1 + n_1^2}\right)\right]$ $\frac{1}{\pi} \left[\frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)} + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2}} * \sqrt{1 + n_1^2}\right)\right]$ $\frac{1}{\pi} \left[\frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)} + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2}} * \sqrt{1 + n_1^2}\right)\right]$ $\frac{1}{\pi} \left[\frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)} + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2}} * \sqrt{1 + n_1^2}\right)\right]$ $\frac{1}{\pi} \left[\frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)} + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2}} * \sqrt{1 + n_1^2}\right)\right]$ $\frac{1}{\pi} \left[\frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)} + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2}} * \sqrt{1 + n_1^2}\right)\right]$ $\frac{1}{\pi} \left[\frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)} + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2}} * \sqrt{1 + n_1^2}\right)\right]$ $\frac{1}{\pi} \left[\frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)} + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2}} * \sqrt{1 + n_1^2}\right)\right]$ $\frac{1}{\pi} \left[\frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)} + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2}} * \sqrt{1 + n_1^2}\right)\right]$ $\frac{1}{\pi} \left[\frac{m_1 * n_1}{\sqrt{1 + n_1^2 + n_1^2}} * \frac{m_1 * n_1}{\sqrt{1 + n_1^2 + n_1^2}} * m_1 *$	773.93	0.386965668	0.189094818	0.37593985	0.826767382	4.32	2.078461	4.330127	9
$ \frac{2}{\pi} = 0.636619772 $ $ \frac{2}{\pi} = 0.636619772 $ $ \frac{2}{\pi} = 0.636619772 $ $ \frac{2}{\pi} = 0.636619772 $ $ \frac{2}{\pi} = 0.636619772 $ $ \frac{2}{\pi} = 0.636619772 $ $ \frac{m_1 * n_1}{\pi} = \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)} + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) $ $ \frac{2}{\pi} \left[\frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)} + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) \right] + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) $ $ \frac{1}{13333} = 0.161164593 $	915.31	0.457658138	0.228571186	0.453172205	0.794066667	3.413333	1.847521	4.330127	00
$\frac{2}{\pi} = 0.636619772$ $\frac{2}{\pi} = 0.636619772$ $\frac{2}{\pi} = 0.636619772$ $\frac{2}{\pi} = 0.636619772$ $\frac{2}{\pi} = 0.636619772$ $\frac{2}{\pi} = \frac{m_1 * n_1}{\pi} * \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)} + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right)$ $\frac{2}{\pi} \left[\frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)} + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right)\right]$ $\frac{1}{\pi} (3333) 0.161164593 1.898734177 1.251215169$ $0.439941345 1.351351351 0.968745373 1.20361077 1.251215169$ $0.439941345 1.351351351 0.741880862 0.43994365 0.43994365$ $0.54868742 0.659742857 0.442911044 0.6597405188$ $0.699854212 0.684931507 0.3495401 0.654705188$	1091.2	0.545624568	0.280413236	0.553505535	0.752644663	2.613333	1.616581	4.330127	7
$ \frac{2}{\pi} = 0.636619772 $ $ \frac{2}{\pi} = 0.636619772 $ $ \frac{2}{\pi} = 0.636619772 $ $ \frac{2}{\pi} = 0.636619772 $ $ \frac{2}{\pi} = 0.636619772 $ $ \frac{m_1 * n_1}{\pi} = \frac{1 + m_1^2 + 2n_1^2}{\sqrt{1 + m_1^2 + n_1^2}} + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2}} * \sqrt{1 + n_1^2}\right) + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2}} * \sqrt{1 + n_1^2}\right) + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2}} * \sqrt{1 + n_1^2}\right) $ $ \frac{2}{\pi} \left[\frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)} + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2}} * \sqrt{1 + n_1^2}\right) \right] + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2}} * \sqrt{1 + n_1^2}\right) $ $ \frac{1}{\pi} \frac{3333}{0.1046021} = \frac{1.648351648}{0.439941345} = \frac{0.968745373}{0.948688742} = \frac{0.74880862}{0.948688742} = \frac{0.74880862}{0.74880862} = \frac{0.74880862}{0.74880862} = \frac{0.74880862}{0.74880862} = \frac{0.74880862}{0.74880862} = \frac{0.74880862}{0.74880862} = \frac{0.7480825641}{0.74880862} = \frac{0.74880862}{0.74880852} = \frac{0.74880862}{0.74880862} = \frac{0.74880862}{0.74880862} = \frac{0.74880862}{0.74880852} = \frac{0.74880862}{0.74880862} = \frac{0.74880862}{0.$	1309.	0.654705188	0.3495401	0.684931507	0.699854212	1.92	1.385641	4.330127	6
$ \Delta p = P * \frac{2}{\pi} \left[\frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)} \right] + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2}} * \frac{1}{\sqrt{1 + n_1^2}} \right) $ $ \Delta p = P * \frac{2}{\pi} \left[\frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)} \right] + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2}} * \sqrt{1 + n_1^2} \right) $ $ \Delta p = P * \frac{2}{\pi} \left[\frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)} \right] + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2}} * \sqrt{1 + n_1^2} \right) $ $ \Delta p = P * \frac{2}{\pi} \left[\frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)} \right] + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2}} * \sqrt{1 + n_1^2} \right) $ $ \Delta p = P * \frac{2}{\pi} \left[\frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)} \right] + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2}} * \sqrt{1 + n_1^2} \right) $ $ \Delta p = P * \frac{2}{\pi} \left[\frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)} \right] + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2}} * \sqrt{1 + n_1^2} \right) $ $ \Delta p = P * \frac{2}{\pi} \left[\frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)} \right] + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2}} * \sqrt{1 + n_1^2} \right) $ $ \Delta p = P * \frac{2}{\pi} \left[\frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)} \right] + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2}} * \sqrt{1 + n_1^2} \right) $ $ \Delta p = P * \frac{2}{\pi} \left[\frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)} \right] + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2}} * \sqrt{1 + n_1^2} \right) $ $ \Delta p = \frac{1}{\pi} \left[\frac{m_1 * n_1}{\sqrt{1 + n_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)} \right] + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2}} * \sqrt{1 + n_1^2} \right) $ $ \Delta p = \frac{1}{\pi} \left[\frac{m_1 * n_1}{\sqrt{1 + n_1^2 + n_1^2}} * \frac{m_1 * n_1}{\sqrt{1 + n_1^2 + n_1^2}} * \frac{m_1 * n_1}{\sqrt{1 + n_1^2 + n_1^2}} * \frac{m_1 * n_1}{\sqrt{1 + n_1^2 + n_1^2}} * \frac{m_1 * n_1}{\sqrt{1 + n_1^2 + n_1^2}} * \frac{m_1 * n_1}{\sqrt{1 + n_1^2 + n_1^2}} * \frac{m_1 * n_1}{\sqrt{1 + n_1^2 + n_1^2}} * \frac{m_1 * n_1}{\sqrt{1 + n_1^2 + n_1^2}} $	1576.0	0.788025641	0.442911044	0.857142857	0.632455532	1.333333	1.154701	4.330127	5
$ \Delta p = P * \frac{2}{\pi} \left[\frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)} \right] + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2}} * \sqrt{1 + n_1^2} \right) $ $ \frac{2}{\sqrt{1 + m_1^2 + n_1^2}} \left[\frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)} \right] + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) $ $ \frac{2}{\pi} \left[\frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)} \right] + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) $ $ \frac{2}{\pi} \left[\frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)} \right] + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) $ $ \frac{2}{\pi} \left[\frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)} \right] + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) $ $ \frac{2}{\pi} \left[\frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)} \right] + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) $ $ \frac{2}{\pi} \left[\frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)} \right] + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) $ $ \frac{1}{\pi} \left[\frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)} \right] + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) $ $ \frac{1}{\pi} \left[\frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)} \right] + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) $ $ \frac{1}{\pi} \left[\frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)} \right] + \sin^{-1} \left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}} \right) $ $ \frac{1}{\pi} \left[\frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{m_1 * n_1}{\sqrt{1 + n_1^2} * m_1^2 * m_1^2} \right] + \sin^{-1} \left(\frac{m_1}{\sqrt{1 + n_1^2} * m_1^2 * m_1^2} \right) $ $ \frac{1}{\pi} \left[\frac{m_1 * n_1}{\sqrt{1 + n_1^2 + n_1^2}} * \frac{m_1 * n_1}{\sqrt{1 + n_1^2 + n_1^2}} * \frac{m_1 * n_1}{\sqrt{1 + n_1^2 + n_1^2}} \right] + \sin^{-1} \left(\frac{m_1 * n_1}{\sqrt{1 + n_1^2 + n_1^2}} * \frac{m_1 * n_1}{\sqrt{1 + n_1^2 + n_1^2}} \right) $ $ \frac{1}{\pi} \left[m_1 * n$	1891.2	0.945623027	0.569924336	1.079136691	0.546868742	0.853333	0.92376	4.330127	4
$\frac{2}{\pi} = 0.636619772$ $\frac{2}{\pi} = 0.636619772$ $\frac{2}{\pi} = \frac{m_1 * n_1}{n_1^2 * n_1^2 * n_1^2 * (n_1^2 + n_1^2)} + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right)$ $\frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} + \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)} + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right)$ $\frac{2}{\pi} \left[\frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)}\right] + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right)$ $\frac{2}{\pi} \left[\frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)}\right] + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right)$ $\frac{2}{\pi} \left[\frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)}\right] + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right)$ $\frac{2}{\pi} \left[\frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)}\right] + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right)$ $\frac{2}{\pi} \left[\frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)}\right] + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right)$ $\frac{2}{\pi} \left[\frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)}\right] + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right)$ $\frac{2}{\pi} \left[\frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)}\right] + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right)$ $\frac{2}{\pi} \left[\frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)}\right] + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right)$ $\frac{2}{\pi} \left[\frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{m_1 * n_1}{\sqrt{1 + n_1^2} * \frac{m_1}{\sqrt{1 + n_1^2}}} * \frac{m_1}{\sqrt{1 + n_1^2} * \frac{m_1}{\sqrt{1 + n_1^2}}}\right]$ $\frac{2}{\pi} \left[\frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{m_1 * n_1}{\sqrt{1 + n_1^2} * \frac{m_1}{\sqrt{1 + n_1^2}}} * \frac{m_1}{\sqrt{1 + n_1^2} * \frac{m_1}{\sqrt{1 + n_1^2}}}\right]$ $\frac{2}{\pi} \left[\frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{m_1}{\sqrt{1 + n_1^2} * \frac{m_1}{\sqrt{1 + n_1^2}}} * \frac{m_1}{1$	2240.7	1.120361077	0.741880862	1.351351351	0.439941345	0.48	0.69282	4.330127	ω
$\frac{2}{\pi} = 0.636619772$ $\frac{2}{\pi} = 0.636619772$ $\frac{2}{\pi} = \frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)} + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right)$ $\frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)} + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right)$ $\frac{2}{\pi} \left[\frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)} + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right)\right]$ $\frac{2}{\pi} \left[\frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)} + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right)\right]$ $\frac{2}{\pi} \left[\frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)} + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right)\right]$ $\frac{2}{\pi} \left[\frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)} + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right)\right]$ $\frac{2}{\pi} \left[\frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)} + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right)\right]$ $\frac{2}{\pi} \left[\frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)} + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right)\right]$ $\frac{2}{\pi} \left[\frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2) * (m_1^2 + n_1^2)} + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right)\right]$ $\frac{2}{\pi} \left[\frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2) * (m_1^2 + n_1^2)} + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right)\right]$ $\frac{2}{\pi} \left[\frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2) * (m_1^2 + n_1^2) * (m_1^2 + n_1^2)}\right]$ $\frac{2}{\pi} \left[\frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2) * (m_1^2 + n_1^2) * (m_1^2 + n_1^2) * (m_1^2 + n_1^2) * (m_1^2 + n_1^2) * (m_1^2 + n_1^2) * (m_1^2 + n_1^2) * (m_1^2 + n_1^2) * (m_1^2 + n_1^2) * (m_1^2 + n_1^2) * (m_1^2 + n_$	20	נ	0.968745373	1.648351648	0.31046021		0.46188	4.330127	2
$\frac{2}{\pi} = 0.636619772$ $\frac{2}{\pi} = 0.636619772$ $\frac{2}{\pi} = \frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{\sqrt{1 + m_1^2 + n_1^2}} + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right) = \frac{2}{\pi} \left[\frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)} + \sin^{-1}\left(\frac{m_1}{\sqrt{m_1^2 + n_1^2} * \sqrt{1 + n_1^2}}\right)\right]$	20	1	1.251215169	1.898734177	0.161164593		0.23094	4.330127	ш
$\Delta p = P * \frac{Z}{\pi} \left[\frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)} \right] + \sin^{-1} \left(\frac{2}{n_1^2 + n_1^2} + \frac{2}$	Δp=	$\left[\frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}} * \frac{1 + m_1^2 + 2n_1^2}{(1 + n_1^2) * (m_1^2 + n_1^2)}\right] + \sin^{-1}\left(\frac{n_1^2 + n_1^2}{n_1^2 + n_1^2}\right) + \sin^{-1}\left(n_$		$\frac{1+m_1^2+2n_1^2}{(1+n_1^2)*(m_1^2+n_1^2)}$	$\frac{m_1 * n_1}{\sqrt{1 + m_1^2 + n_1^2}}$	n_1^2	(1	ll	Depth, z
$n_1 = n_2 = n_3 + n_1 + n_1 + n_1 + n_1 + n_1 + n_2 + 2n_1^2$	$+\frac{n_1^2}{n_1^2}$	$\sqrt{1+m_1^2+n_1^2}^* (1+n_1^2) * (m_1^2+n_1^2)$ + SIII		0.636619772		н	_	1	$m_1 = \frac{L}{B} =$
	_	$m_1 * n_1$	_			oting	tangular Foo	Solution Rec	Boussinesq's

40	39	38	37	36	35	34	33	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	∞	7	6	5	4	ω	2	1	z=BBOF
·															7700	7700	7700	7700	7700	7700	7700	7700	7700	7700	5300	5300	5300	5300	5300	5300	5300	5300	5300	5300	5300	5300	5300	3000	3000	Pc Cs
															0.037	0.037	0.037	0.037	0.037	0.037	0.037	0.037	0.037	0.037	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.017	0.017	
															0.191	0.191	0.191	0.191	0.191	0.191	0.191	0.191	0.191	0.191	0.094	0.094	0.094	0.094	0.094	0.094	0.094	0.094	0.094	0.094	0.094	0.094	0.094	0.135	0.135	
															0.39552	0.39552	0.39552	0.39552	0.39552	0.39552	0.39552	0.39552	0.39552	0.39552	0.3496	0.3496	0.3496	0.3496	0.3496	0.3496	0.3496	0.3496	0.3496	0.3496	0.3496	0.3496	0.3496	0.4152	0.4152	.
#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	0.026513414	0.026513414	0.026513414	0.026513414	0.026513414	0.026513414	0.026513414	0.026513414	0.026513414	0.026513414	0.007409603	0.007409603	0.007409603	0.007409603	0.007409603	0.007409603	0.007409603	0.007409603	0.007409603	0.007409603	0.007409603	0.007409603	0.007409603	0.012012436	0.012012436	(Cs*H)/(1+e°)
#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	0.136866544	0.136866544	0.136866544	0.136866544	0.136866544	0.136866544	0.136866544	0.136866544	0.136866544	0.136866544	0.069650267	0.069650267	0.069650267	0.069650267	0.069650267	0.069650267	0.069650267	0.069650267	0.069650267	0.069650267	0.069650267	0.069650267	0.069650267	0.095392877	0.095392877	(Cc*H)/(1+e°)
#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	1843	1797	1752	1708	1665	1624	1584	1546	1509	1476	1445	1413	1385	1363	1347	1338	1340	1355	1386	1441	1525	1649	1816	2007	2145	Strip Footing po+Δp S
#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	0.001700191	0.001824752	0.00196311	0.002117311	0.002289784	0.002483426	0.002701701	0.002948783	0.003229722	0.003550662	0.001095261	0.001218272	0.0013617	0.001529947	0.001728544	0.001964476	0.002246578	0.00258603	0.002996908	0.003496652	0.004106031	0.00484727	0.005736692	0.010967226	0.012625407	ng S (ft)
#VALUE! 0.85	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	0.020402289	0.021897029	0.023557315	0.025407727	0.027477412	0.029801107	0.03242041	0.035385397	0.038756666	0.042607942	0.01314313	0.014619262	0.016340403	0.018359364	0.020742534	0.02357371	0.026958931	0.031032364	0.035962896	0.041959819	0.049272372	0.058167238	0.068840302	0.131606716	0	S (in)
#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	1720	1674	1630	1587	1546	1507	1471	1438	1408	1383	1363	1346	1338	1339	1355	1387	1441	1522	1637	1795	2002	2257	2546	2245	2191	Spread Footing po+Δp S (ft)
#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	0.000907	0.001012	0.001133	0.001273	0.001436	0.001627	0.001851	0.002116	0.00243	0.002804	0.000909	0.001062	0.001248	0.001474	0.001748	0.002079	0.00248	0.002961	0.003533	0.004205	0.004981	0.005857		0.011552	0.012735	oting S (ft)
#VALUE! 0.81	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	0.010884	0.012141	0.013591	0.015272	0.01723		0.022212	0.02539	0.029158		0			0					0.042394		0.059768	0.070283	0.081886	0.138622	0	S (in)

Meyerhof (1963) General Bearing Capacity Equation

$$q_{all} = (cN_cF_{cs}F_{cd}F_{ci} + qN_qF_{qs}F_{qd}F_{qi} + 0.5\gamma BN_\gamma F_{\gamma s}F_{\gamma d}F_{\gamma i})/FS$$

where:

c = cohesion

q = effective stress at the level of the bottom of the foundation

 γ = unit weight of soil

B = width of foundation (= diameter for circular foundation)

Fcs, Fqs, Fys = shape factors Fcd, Fqd, Fyd = depth factors

Fci, Fqi, Fyi = load inclination factors

Nc, Nq, Ny = bearing capacity factors

Friction Angle, φ =		degrees	Nq =	18.40	$= e^{\pi \tan \emptyset} tan^2 \left(45 + \frac{\emptyset}{2} \right)$
Cohesion, c =		psf			(2)
Effective Unit Weight, γ =	125	pcf	Nc =	30.14	$= (N_q - 1) \cot \emptyset$
Longest Wall Footing Length, L =	25	ft			, ,
Load Inclination (from veritcal), β =	0	degrees	N y =	22.40	$=2(N_q+1)\tan\emptyset$
Factor of Safety, FS =	3				

Summary Tables

Wall Footing Allowable Bearing Capacity, qall (ksf)

Footing Depth, D	Structural Fill Depth, z			·	Foot	ing Width,	B (ft)			
(ft)	(ft)	1.67	2	2.5	3	3.5	4	4.5	5	5.5
2.5	0	3.01	2.98	3.06	2.99	2.94	2.91	2.89	2.88	2.87
4	0 '	4.72	4.69	4.64	4.60	4.57	4.75	4.69	4.64	4.61
6	0	7.02	7.00	6.97	6.94	6.91	6.89	6.87	6.86	6.85
8	0	9.33	9.32	9.31	9.30	9.29	9.28	9.27	9.27	9.27
2.5	1.5	5.71	5.21	4.90	4.48	4.20	4.00	3.85	3.74	3.65
. 4	1.5	8.96	8.20	7.42	6.90	6.53	6.54	6.25	6.03	5.86
6	1.5	13.33	12.25	11.15	10.40	9.87	9.47	9.16	8.92	8.72
8	1.5	17.72	16.32	14.90	13.95	13.27	12.76	12.36	12.05	11.80

Square Footing Allowable Bearing Capacity, qall (ksf)

	1									
Footing	Structural			,	Foot	ing Width,	B (ft)			
Depth, D	Fill Depth, z		3	3.5	4	4 5	г			C F
(ft)	(ft)	2.5	3	5.5	4	4.5	5	5.5	6	6.5
2.5	0	4.18	4.03	3.93	3.85	3.79	3.74	3.70	3.67	3.64
4	0	6.53	6.41	6.31	6.51	6.36	6.23	6.13	6.05	5.98
6	0	10.00	9.86	9.72	9.59	9.48	9.37	9.27	9.63	9.47
8	0	13.50	13.34	13.19	13.05	12.91	12.78	12.66	12.54	12.44
2.5	1.5	10.69	9.07	8.01	`7.28	6.73	6.32	5.99	5.73	5.51
4	1.5	16.72	14.43	12.87	12.32	11.30	10.54	9.93	9.45	9.05
6	1.5	25.60	22.17	19.84	18.14	16.85	15.84	15.02	15.05	14.34
8	1.5	34.55	30.02	26.92	24.67	22.95	21.60	20.51	19.60	18.84

Summary Tables of Shape, Depth, and Inclination Factors

Wall Footings

Fotting Width, B =	1.67	2	2.5	3	3.5	4	4.5	5	5.5
Fcs =	1.04	1.05	1.06	1.07	1.09	1.10	1.11	1.12	1.13
Fqs =	1.04	1.05	1.06	1.07	1.08	1.09	1.10	1.12	1.13
F γs =	0.97	0.97	0.96	0.95	0.94	0.94	0.93	0.92	0.91
Footing Depth, Df =	2.5				- !				
Fcd =	1.39	1.36	1.40	1.33	1.29	1.25	1.22	1.20	1.18
Fqd =	1.28	1.26	1.29	1.24	1.21	1.18	1.16	1.14	1.13
F yd =	1	1	1	1	1	1	1	1	1
Footing Depth, Df =	4								
Fcd =	1.47	1.44	1.40	1.37	1.34	1.40	1.36	1.32	1.29
Fqd =	1.34	1.32	1.29	1.27	1.25	1.29	1.26	1.23	1.21
F γd =	1	1	1	1	1	1	1	1	1
Footing Depth, Df =	6								
Fcd =	1.52	1.50	1.47	1.44	1.42	1.39	1.37	1.35	1.33
Fqd =	1.38	1.36	1.34	1.32	1.30	1.28	1.27	1.25	1.24
F yd =	1	1	1	1	1	1	1	1	1
Footing Depth, Df =	8							,	
Fcd =	1.55	1.53	1.51	1.48	1.46	1.44	1.42	1.40	1.39
Fqd =	1.39	1.38	1.37	1.35	1.33	1.32	1.31	1.29	1.28
F γd =	1	1	1	1	1	1	1	1	1
				Со	lumn Footir	ngs			
Fotting Width, B =	2.5	3	3.5	4	4.5	5	5.5	6	6.5
Fcs =	1.61	1.61	1.61	1.61	1.61	1.61	1.61	1.61	1.61
Fqs =	1.58	1.58	1.58	1.58	1.58	1.58	1.58	1.58	1.58
F ys =	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60
Footing Depth, Df =	2.5		•						
Fcd =	1.40	1.33	1.29	1.25	1.22	1.20	1.18	1.17	1.15
. Fqd =	1.29	1.24	1.21	1.18	1.16	1.14	1.13	1.12	1.11
F yd =	1	. 1	1	1	1	1	1	1	1
Footing Depth, Df =	4								
Fcd =	1.40	1.37	1.34	1.40	1.36	1.32	1.29	1.27	1.25
Fqd =	1.29	1.27	1.25	1.29	1.26	1.23	1.21	1.19	1.18
<i>F γd =</i>	1	1	1	1	1	1	1	1	1
Footing Depth, Df =	6								
Fcd =	1.47	1.44	1.42	1.39	1.37	1.35	1.33	1.40	1.37
Fqd =	1.34	1.32	1.30	1.28	1.27	1.25	1.24	1.29	1.27
F yd =	1	1	1	1	1	1	1	. 1	1
Footing Depth, Df =	8								
Fcd =	1.51	1.48	1.46	1.44	1.42	1.40	1.39	1.37	1.36
Fqd =	1.37	1.35	1.33	1.32	1.31	1.29	1.28	1.27	1.26
F γd =	1	1	1	1	1	1	1	1	1

All Footings

Fci = Fqi =	1	
<i>F</i> γ <i>i</i> =	1	

CITTENGINEERING

Lateral Earth Pressure Coefficients

Project: American Fork Apartments

Job No.

13729

Soil Unit Weight Soil Friction Angle Soil Cohesion

Friction Between Wall and Soil Backfill Slope Angle Wall Back Incline Surcharge Load Height of the Wall

135 y, pcf 34 Ø, degrees 0 psf 17 (δ, Typically 0.5Ø)

ft

0 α, degrees 90 β, degrees psf

Earthquake Acceleration, kh 0.25 %, 2/3 MCE 0

Earthquake Acceleration,k,

14.04 $\Theta' = tan^{-1} \left[\frac{k_h}{1 - k_h} \right]$

At Rest Coefficient, Ko Equivalent Fluid, psf $(K_0 * \gamma)$ Κo $\begin{array}{l}(1-\sin\varphi)\\(0.95-\sin\varphi)\end{array}$ Jaky, 1944 0.44 60 Brooker and Ireland, 1965 0.39 53 Active Coefficient, Ka Ka Equivalent Fluid, psf $(K_a * \gamma)$ $tan^{2}\left(45-\frac{\Phi}{2}\right)$ Rankine (level backfill) 0.28 38 $\cos\alpha\frac{\cos\alpha-\sqrt{\cos^2\alpha-\cos^2\varphi}}{\cos\alpha+\sqrt{\cos^2\alpha-\cos^2\varphi}}$ Rankine (inclined backfill) 0.28 38 $sin^2(\beta + \phi)$ Coulomb Static $sin^{2}\beta sin(\beta-\alpha)\left[1+\sqrt{\frac{sin(\phi+\delta)sin(\phi-\alpha)}{sin(\beta-\delta)sin(\alpha+\beta)}}\right.$ 0.26 35 0 $sin^2(\phi + \beta - \theta')$ Mononabe-Okabe, Seismic, Das Text $\sqrt{\frac{\sin(\phi+\delta)\sin(\phi-\theta'-\alpha)}{\sin(\beta-\delta-\theta')\sin(\alpha+\beta)}}$ 0.44 59 $cos\theta'sin^2\beta sin(\beta-\theta'-\delta)$ $cos^2(\varphi-\theta'-\beta)$ Mononabe-Okabe, Seismic, SEA Paper $\frac{\sin n(\phi + \delta)\sin(\phi - \theta' - \alpha)}{\sin(\delta + \beta + \theta')\sin(\alpha - \beta)}$ 0.50

Passive Coefficients, Kp		Кр	Equivalent Fluid, psf $(K_p * \gamma)$	
Rankine (level backfill)	$tan^2\left(45+\frac{\Phi}{2}\right)$	3.54	478	
Rankine (inclined backfill)	$\cos \alpha \frac{\cos \alpha + \sqrt{\cos^2 \alpha - \cos^2 \varphi}}{\cos \alpha - \sqrt{\cos^2 \alpha - \cos^2 \varphi}}$	3.54	478	
Coulomb	$\frac{\sin^{2}(\beta + \phi)}{\sin^{2}\beta \sin(\beta - \alpha) \left[1 + \sqrt{\frac{\sin(\phi + \delta)\sin(\phi - \alpha)}{\sin(\beta - \delta)\sin(\alpha + \beta)}}\right]^{2}}$	6.77	914	0

Ultimate Coefficient of Friction 0.67 **Allowable Coefficient of Friction** 0.45

Table 5. Stress-Strain and Strength Parameters for Soils Tested under Drained Conditions

				ě	Grain Stre (mm)	2				Compactio					1	ł			١.				
Ŝ	Graup	Soil Description	References	ا ا	å	٥	=	1	Max. Dry		Dy Call	\$	Ayt. Void Ratio	Retailve Density	Saturatio Reling	ng Pereicle Shabe	Shore Ran (TSF)	Shoss Ranga Number C (TSF) of Tests (TSF)		Fiction Angle	د لا	œ	7 ,
				,	۱ ا				۱	- 1	- 1			ı	ı		- 1		١				
₹	S₩:		Mersel et al (38)	,	7.5	6.0					1189		98	2 :		Sub-engular		m 1		S (13)			
₹	GW2		Casagnando (10) / Mansol (39)	e	ಸ	~					22		0.320	s	: :	Sub-engular Sub-engular		m •	200	2 9	20 03	0.68 0.66	7 F
ě	€	1	Casagranda (10)	إءِ		\cdot									3	S. t. minded	3	-	1	62.63			
₹	Š		Casagrande (10)	d :											ł	Sidentification				5 5			
8 8	9 6		Casagranda (10)	<u>.</u> ≠	ç	×					121		0.340	Œ	:	Sub-rounded	_	\$		51 (9)			
3	3	1	Moreover of Co.	; ;	ş -	3					147		950	ş	-	Angretor		. -	1	(6) 45			
*	- K		Marsa (el al (oc)	ន់ ខ	y S	. :							3	3 5	:	S.th. andular		. ~		E 8			
B 6	3 8		Casagrando (10)	4 5	¥ \$	3 -					827.1		97,50	3 3	i	Another				(10)			
	3	1	the first man (10) man sat (42)		2	.	ř				C S		0.20	٤	:	Reinfed	9Q-48.R	-	ı	8 8			
3 5	3 5	Carly Candy Graves (Long)	Hemoti Min	<u>.</u>	9 4	. 5	.	,			025		920	<u> </u>	ŧ	Rounded	27.28	•		2 (8)			
à 6	; ;		Sharen P WZene (41)	ž <u>4</u>	; ;	3 4			ð	91.6	9	3.20		8	:	Anada	20-14.1	-		51(16)			
3	3	П	SHRINGH & MANOR (4.1)		<u>.</u>	ء اد					136.0		0.213	3		Roundad	2	-	ı	(Q) (S)			
ზ :	3		(c) ponguonos	<u>.</u> •	. i	<u> </u>		5	•			9		3	:	200	11. 43			,			
g 	ទ	_	Bird (3)	<u>;</u> :	9 9	,		2	0.45	9		8	0.460	Ş		Annidas	22.46.8	• •		5 2			
AS.	3	١	Kerech (37)	Ŧ	=	90					g'il		2	3		ridge	0.00 -2.2	•	•	200			
₩S	SW-2			Ţ	8 :	90					Ž.		0.50	8	• •	Angulai		•		6 6 8 1			
AS.	SW3		1	7	800	5000	_	Ž.	16,450 120.0	132	l	38				Sub-rounded	20.14.0		- 1	2 2			
AS.	9MS	Venato Sandstone (0.5 in max. size)	Becker, Chan & Seed (2)	0.17	100	0.025	e E	9-	≝	2	117.5		0.470	8	•	Angular		•		(e)			
ઢ	SP-3	Glacks Curvesh Sand	Hischield & Poulos (78)	0.03	7.0	1					ដ្ឋ		989	8	£	Sub-rounded		9		₹ 3			
ď	SPAA	Sacramento River Sand	1.00 (34)	0.22	0.17	0.15					89,5		0.870	88	•	Rounded	1.0-41.1	اءً	ı	35 (2)			
ds	SP-48		Lee (34)	770	0.17	0.15					94.0		0.780	69		Rounded	10 13	4		37 (2)			
ŝ	SP-4C	Sacramento River Sand	(se (34)	0.22	0,17	0.15					97.8		0.710	78	•	Rounded	1.0-41.1	.		(S)			
8	SP-4D		Lee (34)	270	0.17	0.15				į	103.9		0.810	901	•	Rounded	30.41.1	8		45[7]			
9,	SP-S	İ	Bishop (4)	0.25	2.0	51.0							0.820	esoo)	:	Rounded	1.2-287	9		31 (2)			
8	55.05		Bishoo (4)	220	0,17	0.15							0.840	Oertse	:	Rounded	72.71.			(3)			
5 9 ₅	₹.d5		Sherman & Traham (44)	0.2	0.17	0.12	ž	4	ğ				0.730	67	t	Rounded	0.9- 3.5			39 (0)			
ŝ	SP.78	ı	Sharman & Trahan (44)	2	5.5	0.12		9	ğ				0.650	2	t	Rounded	0.9- 3.0	. 3		40 (1)			
9	75 P. 70		Shernen & Trahan (44)	3	£1.0	0.12	9	ġ.	ಕ್ಷ	100,0			0.570	8	:	Rounded	0.9- 3.5	~		1			
5 D	9.00		Starmon & Wason (41)			4 Bleve	_	<u>Q</u>			74.8		1,220	2	:	Angular	2.0-14,0	0 0		39 (8)			
5 2	9	ı	Shannon & Wilson (41)	980		624			~	.5	24.2	8.00		-	- 	Angutar	20-14	1		(8)			
3 8	2 6		Chemon & Mileon (41)	5		72.0			. ed	50.7	78.9	25.00		Ξ	•	Anouta	20-14			(3)			
à 8	40. 40		Chiopon & Chono (20)		3 6	50.0			•	i	•		0550	#3	!	Rounded	10.5	-		93			
7	4 C	1	Direct & Charle (ex)	į	;	37.0							0.50	Ē		Roundad	ģ		ι	37.03			
B 8	SP 168		Utilidan & Linang (22)	3 3	3 2	g g	9	9					0.780	? ?	•	Rounded	0.5			: E			466 032
ъ г	4 6	-	(C) 8087	2 6	Ž .	2 5		. 9					0.780		:	Rounded	3			2			
3 8	2	B Akongrey Ap. U band (Lubech spacenes)	Leda (53)	2 5	200	2 2	1	2					0.570	8	E	Rounded	100	7	1	£5.03			
h 8	2 6		1 10(00)	3		2		. 9					0.570	8	:	Rounded	0.3			47 (5)			
h 9	20.00		Shannon & Wilson 1621	£ -,	; of	51.0									:	Angular		5		38 (13)			
, =	1	1	COE, Omaha District (19)	0.82	0.18	9700	8	ı	Std. AASHO 12			1			:	Sub-rounded	ŀ	6		37 (0)			
3	SHS		COE, Omaha District (19)	1.15	870	90	÷	NP SEC.							•	Sub-rounder	_	0		6			950
KS.	SM-6	5 Sifty Stand wiPebbles (Round Butte Darn)	Shannon & Wilson (41)	933	0.1	8	£	- 1	. 1		1	١			ا :	Angutar	20-14	2	- 1	£8 (B)		- 1	
NS.	SMA	9 Safty Sand wiPumics (Round Butta Carn)	Shannon & Wilson (41)	4.15	350 0	0.013	£								•	Angular	2.0-13.7			43(6)			
3	SM-13	3 Sifly Sand (Round Butto Dam)	Sharnon & Wilson (43)	0.27	0.027	0.0022			5	105,6 16.4		15.00			•	Sub-engula		~ ·		98			
N.S.	SM-18	6 Skiy Sand & Gravel (Round Buile Darn)	Shannon & Wison (42)	0.45	0.052	0,012			- [١	-	1			:	Sub-engular	20-14.0		ı	11)92		- 1	
38188	SM-SC-1A		Casagrande (10) / Inslay & Miles (27)		0.0 20.0	0000	Ξ	Sed.							: i		3,6-32		5	2 2			
38480	3N-5C-18		Casegrando (10) / Instey & Hills (27)		g	0.002	2	- E	SM. AASHO 13						i 1		3.0-18.0	• •	2 5	\$;			
SHSC	SHSC-IC		Casagrande (10) / Instey & Hills (27)	_[8	0.0002	ž	Z.	١		1						30-30			,		4	
\$	F		Hanchfeld & Poulos (28)	9	900	9000					9		0.570						3 8	6 5		76.0	900
ទ	딅	1	Shannon & Wison (41)	6.078	200	D:0084	. [.			1	١					2		3			1	
₹	HT-S		Sharmon & Wilson (41)	6	0.026	0.0062	_		16,450						; ;		451-0.2	7 -	3 :	<u> </u>			
ರ	3 3 3		Casagnande & Hirschfeld (B)	400	000										: 23 '		4		100	3 :	•		
ಶ	2	- 1	Casagranda & Hirschied (8)	0.037	800	٠,	ı	١	Harvard 11	۱	1	333			: P2		9 6	٠ ا	85.0	æ			
ರ 	D-30E		Casagrande & Wrschfeld (8)	0,037	0.00			£ :		112.8 16.7	1.5.1	2 5			: : ES 1		70 07		eg d	3 5		0.00	240
ฮ์	ğ		Casagrande & Hirschield (8)) B	0.0		3 3		Harvand			97.5			2 5		4 d	. .	2 2	3 8		3 3	
ರ	3	E Saly Clay (Caryon Oam)	Cessgrange & Mrscharb (/)	K03/	30.0		4	١	١	l	١	38			à			Ì	7		1	1	1